平成 24 年度 卒業論文

シンチレーション光測定による 多ピクセル型光子検出器 MPPC 時間特性の評価

> 広島大学理学部物理科学科 クォーク物理学研究室 B095507 市間 俊宏

> > 2013 年 2 月 8 日 指導教官: 杉立徹教授 主査: 杉立徹教授 副査: 岡本宏己教授

概要

高エネルギー原子核衝突実験において、衝突反応直後に生成される熱光子はクォーク とグルーオンが核子の閉じ込めから解放された「クォーク・グルーオン・プラズマ (QGP) 相」の探索において重要なプローブである。熱光子を検出する上で、信号と背景事象と なる粒子とを識別するにはエネルギー分解能だけでなく高い時間分解能が要求される。 そのための検出素子候補として、浜松ホトニクス社製の MPPC (Multi-Pixel Photon Counter) がある。MPPC はピクセル型光子検出器の1つであり、高時間分解能を有し、 1光子入射に対して感度のある検出素子である。

本研究では、宇宙線によるシンチレーション光を用いて、MPPC 時間応答の評価を 行った。2cm×2cm×1cmのプラスチックシンチレーターに2個のMPPCと2個のPMT をそれぞれ正対する側面に取り付け、シンチレーション光の多面同時読み出し装置を製 作し、宇宙線の測定を行った。測定データから宇宙線事象の選別を行い、時間測定に伴 うスタートタイミングのゆらぎやシンチレーション光発生地点に依存するゆらぎを打 ち消すパラメータを導入、出力波高に依存して発生する Time Walk Effect に対する補 正を行い、MPPC の時間分解能を算出した。その結果、424.4±7.4[ps]という値が得ら れた。 目次

1章	導入 4	:
1.1	高エネルギー原子核衝突実験 ・・・・・・・・・・・・・ 4	:
	1.1.1 LHC 加速器 ・・・・・・・・・・・・・・・・ 4	
	1.1.2 ALICE 実験 ・・・・・・・・・・・・・・・・・ 4	
1.2	荷電粒子と物質との相互作用・・・・・・・・・・・・・ 4	:
	1.2.1 シンチレーション光・・・・・・・・・・・・・・ 4	
	1.2.2 宇宙線・・・・・・・・・・・・・・・・・・・・ 5	
1.3	$MPPC \cdot $	l
	1.3.1 APD $\cdots \cdots \cdots$	l
	1.3.2 MPPC $\cdot \cdot \cdot$	
	1.3.3 MPPC の特徴・諸性質・・・・・・・・・・・・ 7	7
1.4	NIM \succeq CAMAC $\cdots \cdots \otimes 8$	
	1.4.1 NIM $\cdots \cdots \otimes 8$	
		`
	$1.4.2 \text{CAMAC} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots $	1
	1.4.2 CAMAC $\cdots \cdots \cdots$	1
2 章	1.4.2 CAMAC · · · · · · · · · · · · · · · · · · ·)
2 章 2.1	1.4.2 CAMAC · · · · · · · · · · · · · · · · · · ·))
2 章 2.1 2.2	1.4.2 CAMAC ·································));
2 章 2.1 2.2	1.4.2 CAMAC 10 実験方法 10 宇宙線測定セットアップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・))
2 章 2.1 2.2	1.4.2 CAMAC 10 実験方法 10 宇宙線測定セットアップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・))
2 章 2.1 2.2	1.4.2 CAMAC 10 実験方法 10 宇宙線測定セットアップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)
2 章 2.1 2.2	1.4.2 CAMAC 10 実験方法 10 宇宙線測定セットアップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
 2章 2.1 2.2 3章 	1.4.2 CAMAC 10 実験方法 10 宇宙線測定セットアップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
 2 章 2.1 2.2 3 章 3.1 	1.4.2 CAMAC 10 実験方法 10 宇宙線測定セットアップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)) }
 2章 2.1 2.2 3章 3.1 	1.4.2 CAMAC 10 実験方法 10 宇宙線測定セットアップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)) :
 2章 2.1 2.2 3章 3.1 	1.4.2 CAMAC 10 実験方法 10 宇宙線測定セットアップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)) : : : : : : : : : : : : : : : : : :

3.2	時間分	分解能 •	••	•••	•••	• •	•	••	•	•	••	•	•	•	•••	•	•	•	23
	3.2.1	Time Wa	lk Ef	fect	の補	正を	行っ	ったう	デー	タレ	こよ	る	時間	引分	解i	能	•	•	23
3.3	時間分	分解能に関	する	考察	<u> </u>	••	•	•••	•	•	••	•	•	• •	•	•	•	• 4	26
	3.3.1	同時フィ	ッテ	イン	ノブレ	こよえ	る時	間分	う解	能	評値	田注	<u>.</u>	•	•••	•	•	• 2	26
	3.3.2	検出素子	·の組	み合	わせ	さに。	よる	時間	訂分	解	能	平注	•	•	•••	•	•	• 2	27

4章 結論

29

参考文献

謝辞

1章 導入

1.1 高エネルギー原子核衝突実験

1.1.1 LHC (Large Hadron Collider) 加速器

LHC加速器とは、スイス、フランスの国境をまたぐ世界最大のハドロン衝突型加速 器である。欧州原子核機構(CERN)が建設し、高エネルギーの粒子ビームを正面衝突 させることで様々な素粒子反応を生成し、観測している。

1.1.2 ALICE 実験

ALICE 実験とは、A Large Ion Collider Experiment の略で、LHC で行われている 素粒子実験の1つである。高エネルギー原子核の衝突実験に特化したグループで、衝突 によってクォーク・グルーオンが核子の閉じ込め現象から開放されたクォーク・グルー オン・プラズマ(QGP) 相の探索を目的としている。QGP 相の性質を解明することに より、ビックバン直後の初期宇宙の構造を理解することにもつながる。

QGPの探索を行う上で重要なプローブであるとされるのが、熱平衡状態での熱輻射 によって放出される熱光子である。熱光子の観測は背景事象との識別が1つの課題とな っており、検出器に高い時間分解能を要求する。

1.2 荷電粒子と物質との相互作用

本研究を行うにあたり、荷電粒子と物質との相互作用について述べる。

1.2.1 シンチレーション光

物質中を荷電粒子が通過した時、原子中の電子にエネルギーを与えて励起させ、それ が元の状態に戻る際に発生する光をシンチレーション光といい、シンチレーション光を 発生させる物質をシンチレーターと呼ぶ。シンチレーション光を測定することで、シン チレーターを通過した素粒子を検出することができる。シンチレーション光はそのまま では非常に微弱で、測定するには光を電気信号に変え、さらに増幅させる必要がある。 そのような検出器の代表的な例として、光電子増倍管(PMT)がある。今回行った実 験でも PMT を使用している。また本研究の対象である MPPC もまた入射光子による 信号を増幅し測定を行う検出器の1つである。

1.2.2 宇宙線

宇宙線とは大気圏外から地球大気中に降り注ぐ放射線の名称である。大気圏外からや ってくる1次宇宙線のほとんどは陽子である。陽子は大気中の原子核と衝突し、2次宇 宙線を発生させる。2次宇宙線はまずπ中間子が生成され、それが崩壊すると共に大量 のミューオンが生成される。今回宇宙線として測っているのはこのミューオンである。

地表でミューオンは 10cm²に 1 秒あたり約 1 個の割合で降り注ぎ、物質中における エネルギー損失はおよそ 2MeV/gcm⁻²である[1],[2]

MPPC (Multi-Pixel Photon Counter)

1.3.1 APD (Avalanche Photo Diode)

APD とは、半導体をベースとした光子検出器で、p 型半導体と n 型半導体が接合さ れ、間に異なるキャリア同士が打ち消しあった空乏層が出来ている。逆バイアス電圧を かけることで内部に電場が発生し、空乏層にバンドギャップ以上のエネルギーをもつ光 子が入射することで生じた電子・正孔対が加速される。一定上の逆バイアス電圧を印加 すると加速されたキャリアが同様に新たなキャリアを生み出し、雪崩式にキャリアが増 倍され、電流が流れる。この増倍のことをアバランシェ増倍と言い、それが発生すると きの逆バイアス電圧をブレイクダウン電圧と言う。ブレイクダウン電圧よりも高い逆バ イアス電圧を印加すると、一光子の入射に対し一定のパルスを出す「ガイガーモード」 と呼ばれる状態となる。

1.3.2 MPPC (Multi-Pixel Photon Counter)

MPPC とは浜松ホトニクス社が開発した光子検出器で、先に述べたガイガーモード の APD をピクセル状に配置したものである。光子が入射したそれぞれの APD から出 力されたパルスの総和が MPPC の出力となるため、その出力の波高などから MPPC に 入射した光子数を見積もる事ができる。

本研究に使用した MPPC は S10362-33-025C という型で、受光面は 3mm×3mm、 総ピクセル数は 14,400 ピクセルである。

図 1.1 MPPC (HAMAMATSU S10362-33-025C)

図 1.2 MPPC 等価回路[3]

1.3.3 MPPC の特徴、諸性質

MPPC の主な特徴として主に以下の点が挙げられる。

- 小型、軽量である
- 優れたフォトンカウンティング能力をもつ
- 高い増幅率をもつ(10⁵~10⁶)
- 高い時間分解能をもつ
- ・ 磁場の影響を受けない
- 常温での動作が可能

上記のような優れた性能を持つ MPPC は、放射線測定装置や人体中の悪性腫瘍を画像 化する装置などへの利用が期待され、それに向けた研究開発が現在進行している。 高エネルギー原子核衝突における熱光子と背景事象との識別にも、高い時間分解能をも つ MPPC は有効であると期待され、検出素子の候補として挙がっている。本研究では、 MPPC の「高い時間分解能」という点に着目し、それに対する評価を行なった。

MPPC の持ついくつかの性質について、以下で説明を行う。

ダークカウント

MPPC の各ピクセルで発生するノイズはガイガーモードの性質上、1 光子が入射した ときと同じパルスを発生させる。このノイズをダークカウントといい、MPPC 測定時 にはこのダークカウントによって検出光子数が本来入射した光子数よりも多くなる。

アフターパルス

各ピクセル中の空乏層に光子が入射し、電子、正孔対が生成されアバランシェ増倍される。この過程で電子が不純物などによって生じた格子欠陥にトラップされることがある。その後トラップされた電子が再放出され、異なるパルスとして検出される。これを アフターパルスという。

クロストーク

あるピクセルでアバランシェ増倍が起こった際に2次光子が発生し、その光子が隣接 する別のピクセルに移りアバランシェ増倍を起こすことがある。1光子入射に対し複数 のピクセルでパルスが発生せるこの現象をクロストークという。

1.3 NIM と CAMAC

1.4.1 NIM

NIM モジュールとは Nuclear Instruments Modules の略であり、1960 年代に米国 で制定された放射線測定モジュール標準規格、NIM 規格に基づき設計されている。NIM 規格におけるロジック信号は「0」を 0V、「1」を-0.8V で扱っている。本論文では NIM 信号と呼称する。

NIM モジュールは、電源となる NIM bin に挿入して使用する。1 台の NIM bin には 最大 12 個のモジュールを挿入することができ、モジュール間を LEMO ケーブルで繋 ぐことで回路を作製する。以下に、本研究で使用した NIM モジュールを挙げる。

DISCRIMINATOR

負の信号を入力し、閾値(Threshold 電圧)を超えると NIM 信号を出力する。信号の幅と Threshold 電圧は調節することができる。各 PMT または MPPC からの出力を NIM 信号に変換するのに使用した。

GATE GENERATOR

NIM 信号を入力されると、任意の遅延、幅をもつ NIM 信号が出力される。本研究においては幅の調節用として使用した。

COINCIDENCE

複数の入力(最大4つ)に対し、「1」が重なった時点でNIM 信号を出力する。

FAN IN/OUT

入力パルスに対し、反転させたものを出力する。PMT 出力が負のパルスであるのに 対し、MPPC 出力が正のパルスであることから、それを負のパルスに変換するために 使用した。

DELAY

NIM 信号を遅延させるためのモジュールであり。遅延時間をスイッチによって 0~31ns の間で調節できるものと、1ch あたり 50ns 遅延させるものを使用している。

VISUAL SCALER

入力信号をカウントし、表示する。各検出器からの出力に異常がないかどうかを確か める目安として使用した。

HIGH VOLTAGE POWER SUPPLY

PMT 及び MPPC の VIAS Voltage を供給する。

1.4.2 CAMAC

CAMAC とは Computer Automated Measurement and Control Standard の略であ り、CAMAC モジュールが測定したデータをパソコンに転送することができる。 CAMAC Crete に挿入して使用し、各モジュールは CAMAC Crete のバスを通じてデー タをやり取りする。

CS-ADC REPIC 製 RPC-022

入力パルスの電荷量を測定するモジュール。CS とは Charge Sensitive の略で、これ とは別にパルスの波高を測定する Peak Hold 型の ADC (PH-ADC) がある。16 のチャンネルの他に Gate があり、入力された NIM 信号の幅の間だけ電荷 量を測定、積分する。0~-1000pC まで測定することが可能である。逆に 1ch あたりは 0.25pC に相当する。また、ADC にはチャンネル毎に 100ch 前後のペデスタルが存在 し、ADC のデータを扱うときには事前に測ったペデスタルの値との差をとっておく必 要がある。

TDC REPIC 製 RPC-060

START に NIM 信号が入力されてから、各チャンネルに入力があるまでの時間を測 定する。0~4095 ch まで測ることができる。本研究で使用したモジュールは、1ch あた り 25ps のものを使用している。

2章 実験方法

2.1 宇宙線測定セットアップ

本実験では、MPPC の特性を評価するための光源として、宇宙線がプラスチックシ ンチレーターに入射することによって発生するシンチレーション光を用いる。観測用の シンチレーターは縦2cm、横2cm、厚さ1cmのものを使用した。しかしこの場合、 宇宙線のシンチレーターへの入射位置によって得られる信号が変化してしまう。入射位 置による効果を除去するため、2個の MPPC をシンチレーター側面に正対するように 取り付けた。また PMT に関しても同様に取り付けている。具体的な入射位置による効 果の除去方法は後述する。

本セットアップでは ADC 及び TDC のトリガーとして、観測用のシンチレーターの 上下を別のシンチレーターで挟み、上下を貫通したイベントを用いている。上下のシン チレーターで発生したシンチレーション光を PMT で測定し、それらの Coincidence (論 理積) をとっている。つまり上下のシンチレーターを荷電粒子が貫通したときのイベン トを抽出させている。上下のシンチレーターは縦 5 cm、横 5 cm、厚さ 0.5 cm のもの を用いている。また、上下の PMT の取り付け方向は逆向きにしている。これは、シン チレーターと PMT の間にあるライトガイド並びに PMT そのものを宇宙線が通過した 際にトリガーが反応することを防ぐためであり、シンチレーターで発生したイベントの みを汲み取っている。本論文中では、中央に位置する観測用シンチレーターに取り付け られた 2 個の PMT を PMT1、PMT2、2 個の MPPC を MPPC1、MPPC2、トリガー 用のシンチレーターに接続された PMT に関しては上を PMT3、下を PMT4 と呼称す る。

図 2.1 宇宙線測定用シンチレーター及び PMT, MPPC 配置図

図 2.2 宇宙線測定用シンチレーター及び PMT, MPPC 配置の写真

図 2.3 宇宙線測定用シンチレーター及び PMT, MPPC 配置の写真 (別角度より)

図 2.4 宇宙線測定用セットアップ 回路図

検出器類は暗箱内に設置し、さらに上から暗幕をかけるなどして照明等の光が入らない ようにした。

PMT の出力信号は負であるのに対し、MPPC の出力信号は正であるため、MPPC からの出力を FAN-IN/OUT で反転させている。その後 ADC への入力はそのままの信号 を、TDC への入力は DISCRIMINATOR を通し NIM 信号へ変換したものを入れている。ADC の GATE 及び TDC の START へ入力するトリガー信号は、PMT3、PMT4 の NIM 出力信号を COINCIDENCE に入れ、その出力を用いている。間には VETO 回路を組み込み、トリガー信号の間隔を広げている。

PMTのVIAS Voltageは全て-1700[V]で統一し、MPPCのVIAS Voltage については MPPC1を71.6[V], MPPC2を71.9[V]としている。

このようなセットアップを用い、合計 30,000 イベントを測定した。

図 2.5 ADC 入力のオシロスコープ波形上から PMT3、PMT1、MPPC1、GATE

図 2.6 TDC 入力のオシロスコープ波形 上から PMT3、PMT1、MPPC1、START

2.2 解析手法

2.2.1 宇宙線イベントの抽出

取得したデータには不要なイベントが多く含まれている。時間応答の評価を行う前に、 まずは中央のシンチレーターを通過し、シンチレーション光を発生させたイベントを取 り出す必要がある。ヒストグラムから以下の不要なイベントを除去し、宇宙線のみのデ ータで評価を行なっていく。

観測用シンチレーターを通過していないイベント

本実験では ADC、TDC のデータを読み込むトリガーを、上下の PMT が反応した場合にしている。シンチレーターの形状から、上下を通過していても間にある観測用のシンチレーターを通過していない、もしくは上のみ、下のみを通過したイベントでもトリガーにかかり、データを取得してしまう。これを取り除くため、PMT3 と PMT4の ADC2 次元ヒストグラムから、宇宙線ではない部分を判別しそのイベントを除いた。

ADC(PMT3)_vs_ADC(PMT4)

図 2.7 PMT3,4の2次元ヒストグラム

図 2.7 における領域①と④は、上下のどちらか一方で宇宙線によるイベントが発生して おり、もう一方ではノイズイベントが起きている。領域②ではどちらもノイズイベント であり、共に宇宙線のイベントが起こっているのは領域③である。 TDC で Overflow したイベント

PMT1,2 及び MPPC1,2 の TDC ヒストグラムより、Overflow(4095ch)となったイベントを取り除いた。これは TDC START に信号が入ったが各チャンネルに信号が入らず時間差が測れなかったものであるため、宇宙線によるイベントではないと判断した。

2.2.2 Time Walk Effect

各検出器からのアナログ信号(パルス)は、DISCRIMINATOR によってデジタル信号(NIM 信号)に変換される。この時、パルスの波高によって Threshold 電圧を越えるタイミングが変わり、結果として TDC の値はパルスの波高に依存する。これを Time Walk Effect といい、パルスの波高が低い、つまり低チャンネル側ほど立ち上がりが緩やかで TDC 値が大きく見積もられる。

図 2.8 Time Walk Effect の概念図

Time Walk Effect の補正を行うことを Slewing Correction と呼び、ADC と TDC の相 関のフィッティングから補正項を導き出して行う。しかし、この測定では PMT1,2 及 び MPPC1,2 に関しては光源が同一のものであること、シンチレーターが十分に小型で あることからそれぞれの ADC ヒストグラムに正の相関があるため、Time Walk Effect がほぼ無視出来る十分な ADC 値以上の領域を取り出す方法を用いた。

2.2.3時間分解能の計算

宇宙線のみのデータを取り出したとしても、そこにはまだ不要な情報が含まれており、 そのままで時間分解能を評価することが出来ない。MPPCのTDC値には、主に以下の 情報が含まれている。

- 上下のシンチレーターに対する光子の入射位置による揺らぎ・・・・(a)
- PMT3,4 に対する検出器由来の揺らぎ・・・・・・・・・・・・・(b)
- 観測用シンチレーターに対する光子の入射位置による揺らぎ・・・・(c)
- MPPC 自体に由来する揺らぎ・・・・・・・・・・・・・・・・(d)

最終的には(d)が求めたい時間分解能に相当する。そのためそれ以外の成分を取り除く 必要がある。

まず初めに(c)について、観測用シンチレーターのどの部分に入射したかによって TDC の値は異なってくる。これは発光位置から MPPC 受光面までの距離依存性と言い換え られる。これを取り除くため、向かい合う MPPC 同士で TDC 値の平均をとる。

$$T_1 = \frac{TDC_{MPPC1} + TDC_{MPPC2}}{2} \tag{2.1}$$

(a), (b)に関しては TDC の START に影響を与えており、結果として得られた TDC 値 は取り始めのタイミングがばらばらである。そのため START に信号が入ってからの時 間差ではなく、同一イベント中における観測用シンチレーターに接続された PMT1, 2 の TDC 値との差をとる。このとき、PMT についても発光位置と受光面間の距離依存 性があることから、PMT1, 2 の TDC 平均の値を用いる。

$$T_{2} = T_{1} - \frac{TDC_{PMT1} + TDC_{PMT2}}{2}$$
$$= \frac{1}{2} (TDC_{MPPC1} + TDC_{MPPC2} - TDC_{PMT1} - TDC_{PMT2})$$
(2.2)

これをヒストグラムにすると、含まれているのは PMT1, 2 及び MPPC1, 2 それぞれに 固有の揺らぎである。式で表すと、誤差伝播から以下のようになる。

$$\sigma_T = \frac{1}{2} \sqrt{\sigma_{MPPC1}^2 + \sigma_{MPPC2}^2 + \sigma_{PMT1}^2 + \sigma_{PMT2}^2}$$
(2.3)

ここで、 σ_{PMT} は σ_{MPPC} に対し十分に小さく無視出来ることと、2つの MPPC の揺らぎ はほぼ等しいという仮定を用いる。

$$\sigma_{MPPC1,2} \gg \sigma_{PMT1,2} \tag{2.4}$$

$$\sigma_{MPPC} \equiv \sigma_{MPPC1} \cong \sigma_{MPPC2} \tag{2.5}$$

これを(2.3)に適用すると、

$$\sigma_T = \frac{\sqrt{2}}{2} \sigma_{MPPC} \tag{2.6}$$

となり、MPPCの時間分解能は $\sigma_{MPPC} = \sqrt{2}\sigma_T$ となる。

以上のようにして宇宙線によるシンチレーション光測定の結果から MPPC の時間分解 能を評価する。

3章 実験及び解析結果と考察

3.1 宇宙線ヒストグラム

3.1.1 測定したデータのヒストグラム

測定したそのままのデータを以下に示す。この時点では ADC ペデスタルの値を引い ていない。なお、ペデスタルの値は表 3.1 のようになる。

検出器	ペデスタル値[ch]	検出器	ペデスタル値[ch]
PMT1	105	MPPC2	127
PMT2	114	PMT3	104
MPPC1	148	PMT4	112

表 3.1 検出器ごとの ADC ペデスタル値

図 3.1 PMT3, 4の ADC 及び TDC ヒストグラム

図 3.3 MPPC1, 2の ADC 及び TDC ヒストグラム

3.1.2 宇宙線以外のイベント除去後のヒストグラム

前章で述べた通りに宇宙線のみのイベントを取り出す。まずは中央のシンチレーター を通過し、TDC 値が Overflow していないイベントを取り出し描画した。

図 3.4 PMT3, 4の ADC 及び TDC ヒストグラム(宇宙線のみのイベント)

図 3.6 MPPC1, 2の ADC 及び TDC ヒストグラム (宇宙線のみのイベント)

3.1.3 Time Walk Effect の補正

次に、Time Walk Effect を取り除く。それ以上であれば Time Walk Effect が十分 無視出来る ADC 値を設定するために、PMT1,2及び MPPC1,2の ADC ヒストグラム をガウス関数+指数関数でフィッティングを行った。そのときのガウス関数のパラメー タ σ の値(図 3.7 ではパラメータ p4)を求め、mean 値から-1 σ の値を基準として設 定した。宇宙線のイベントが十分に含まれ、なおかつ Time Walk Effect がほぼ無視す ることが出来る。

図 3.7 PMT1,2及び MPPC1,2の ADC ヒストグラムのフィッティング 青色がガウス関数、緑色が指数関数、赤色がそれらの合成関数

検出器	-1σ from Mean [ch]
PMT1	312
PMT2	274
MPPC1	416
MPPC2	324

表 3.2 検出器ごとの Time Walk Effect 補正用 ADC 基準値

 図 3.8 PMT1,2及び MPPC1,2における ADC-TDC 相関
 図 3.7 より取得した ADC 基準値を境に、黒色の領域を除去し 赤色の領域イベントから時間分解能を評価する。

3.2 時間分解能

3.2.1 Time Walk Effect の補正を行ったデータによる時間分解能

それぞれの検出器の場合で得られた ADC 基準値によるカットをかけ、補正したデー タから式(2.2)の T₂を計算、ADC との 2 次元ヒストグラムと T₂単体の 1 次元ヒスト グラムを得た。1 次元ヒストグラムについては横軸を[ps]に変換し(25[ps/ch])、ガウ ス関数でのフィッティングを行った。

横軸は検出器ごとの ADC 値[ch]、縦軸は式(2.2)の T2[ch]

図 3.10 4 つの検出器それぞれの T2 1 次元ヒストグラム 横軸は[ps]に変換し、ガウス関数でフィットした。

フィッティングの結果より、式(2.6)から時間分解能を計算した。

カット条件	MPPC 時間分解能 [ps]
PMT1 ADC > 312[ch]	529.1 ± 10.5
PMT2 ADC > 274[ch]	513.9 ± 10.6
MPPC1 ADC > $416[ch]$	$535.7 {\pm} 9.1$
MPPC2 ADC > 324[ch]	491.3 ± 8.2

表 3.3 各検出器別 ADC 基準値による補正後の MPPC 時間分解能

また、ADC 基準値以上という条件を4種類全て満たすイベントについて、T₂の1次元 ヒストグラムを取得した。

T2 Histogram (4 Detectors)

図 3.11 4種類全ての ADC 基準値を上回るイベントでの T21 次元ヒストグラム

この場合の MPPC 時間分解能は、式(2.6) より 424.4±7.4[ps]となった。

3.3 時間分解能に関する考察

本実験では、Time Walk Effect が無視できる領域のイベントを取り出し、2つの MPPC の TDC 平均値から PMT の TDC 平均値を引くことで不要な揺らぎを除去し時 間分解能を計算した。しかし、この方法以外にも MPPC の時間分解能を評価する方法 がある。ここでは2通りの方法について述べる。

3.3.1 同時フィッティングによる時間分解能評価法

時間分解能を評価する別の方法の1つとして、式(2.2)のT₂と各検出器のADC との2次元ヒストグラムから Slewing Correction を行い、得られたT₂の1次元 ヒストグラムを用いて、時間分解能を評価する方法がある。これは最も一般的 でなおかつ厳密なやり方であり、4つ検出器での2次元ヒストグラム全てで同時 にフィッティングを行い、最適な Slewing Correction を適用することができる。 しかし、本実験ではすでに述べた通り、今回行った方法で時間分解能の評価を することが可能だったため、2章2.2で述べた方法を採用した。 3.3.2 検出素子の組み合わせによる時間分解能評価法

今回行った方法以外の MPPC 時間分解能を評価する方法のもう1つとして、観測用 のシンチレーターに接続された4つの検出器 (PMT1,2及び MPPC1,2)の TDC 値の 差分をとり、得られたヒストグラムの標準偏差σから時間分解能を計算する方法がある。 差分をとることで上下の PMT 由来の揺らぎは除去され、4つの検出器それぞれの固有 の揺らぎと、光子の入射位置に依存する揺らぎが残される。ここで観測用シンチレータ ーが十分に小さく、入射位置による影響が無視出来ると考える。差分の取り方は全部で 6 種類あり、各々についてガウス関数でフィッティングを行い、標準偏差σを求める。

図 3.12 PMT1, 2 及び MPPC1, 2 の TDC 差分ヒストグラム

誤差の伝播から考えると、検出器固有の時間分解能 σ と差分ヒストグラムの標準偏差 σ の間には、以下の関係があることが分かる。以下、PMT1, 2 のことを P1, P2、MPPC1, 2 のことを M1, M2 と表現する。

$$\begin{cases}
\sigma_{P1-P2}^{2} = \sigma_{P1}^{2} + \sigma_{P2}^{2} \\
\sigma_{P1-M1}^{2} = \sigma_{P1}^{2} + \sigma_{M1}^{2} \\
\sigma_{P1-M2}^{2} = \sigma_{P1}^{2} + \sigma_{M2}^{2} \\
\sigma_{P2-M1}^{2} = \sigma_{P2}^{2} + \sigma_{M1}^{2} \\
\sigma_{P2-M2}^{2} = \sigma_{P2}^{2} + \sigma_{M2}^{2} \\
\sigma_{M1-M2}^{2} = \sigma_{M1}^{2} + \sigma_{M2}^{2}
\end{cases}$$
(3,1)

これら6つの方程式を満たすように、左辺の測定値を最もよく再現するような各検出 器の時間分解能 σ の組み合わせを求めることが、この評価法の骨子である。各素子の時 間分解能を各々求めることができるところに最大の利点がある。本論文の結果と比較し、 評価方法による時間分解能の系統的な差異を求めることが今後の課題の1つである。

4章 結論

本研究では、次世代の光子検出器である MPPC の性能評価実験の1つとして、側面 に4つの検出器を取り付けたプラスチックシンチレーターを用いて、宇宙線によるシン チレーション光を測定した。得られたデータに対し宇宙線イベントのみを取り出すカッ トを適用し、さらに Time Walk Effect に対する補正を行った。この補正は本実験独自 の方法であり、光源が1つであることとシンチレーターが小型であることから各検出器 の ADC データに線形性があるために、ADC 値の高い領域のイベントで評価を行った。 式(2,2)のヒストグラムのフィッティング結果から、MPPC のもつ時間分解能は 424.4 ±7.4[ps]という値となった。

今回使用した評価法以外にも MPPC の時間分解能を求める方法があり、それ関して も時間分解能の評価を行い、今回の結果と比較していくことが今後の課題となる。

参考文献

- [1] 原子核物理学 永江知文·永宮正治 共著 裳華房
- [2] 素粒子物理学 原康夫 著 裳華房
- [3] MPPCの特性改善情報 里健一
 第4回次世代光センサーに関するワークショップ兼 EASIROC 研究会 講演資料
 2012年12月25,26日開催

謝辞

本研究を行うにあたり、研究室の皆様には大変お世話になりました。 指導教官である杉立先生には、実験を行う上での心構えや気をつけるべき点など多くの こと教わりました。1つの結果を得るために何を、どのようにして手をつけていくべき かを常に考え、先のことを予想しながら研究を行うという姿勢はこれまでの自分に足り なかったもので、非常に重要なことであることを学びました。中宮さんには、データ解 析の方法について多くのアドバイスを頂き、また自分が気付いていなかった事や失念し ていたことを指摘していただいたことが幾度もありました。本当に感謝しています。 M1の佐藤さんと大久保さんには、性能評価実験に途中から参加した自分に MPPC に ついての基礎知識や実験手法などを丁寧に教えて頂きました。志垣先生には前期の Lab Exercise で研究活動の基礎を指導して頂きました。また杉立先生、本間先生と共に進 捗報告の場で適切な意見やアドバイスを頂き、その後の活動に大いに役立ちました。三 次先生にはセミナーでお世話になり、原子核物理学の理解が進みました。そのほかにも 研究室の先輩・スタッフの皆様には常に親身になって接して頂き、物理に関する興味深 い話なども沢山聞くことができました。本当に感謝しています。最後になりますが、同 期の皆さんには助言を与え合うなどして、日々楽しみながら研究活動を行う事ができま した。特に関畑君には研究内容が近く、また自分よりも一足早く性能評価に参加してい たこともあって色々な事を教えてもらいました。

1年間の研究活動を行い、本論文を無事に書き終えることが出来たのは、クォーク物 理学研究室の皆様のおかげです。本当にありがとうございました。

31