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1 INTRODUCTION

It is believed that elementary particles are quarks ( and leptons ) at present through
the success of the quark model proposed by Gell-Mann [1] and Zweig [2]. However the
quarks have never been measured as an isolated particle in nature, these exist with a
color singlet combination of its color charge. This phenomenon is called the ”Color
Confinement”. Tt is generally believed that the Quantum Choromodynamics (QCD)
exhibits a phase transition at some temperature T, and quarks and gluons confined in
the low temperature phase are liberated to form the “quark gluon plasma”.

It seems that our universe was started from the Big Bang about twenty billion years
ago with an extremely high temperature and density. Then the quark gluon plasma
mentioned above is realized in the very early universe and go to the hadronic phase
through the phase transition. ( volume is increasing, T is decreasing ) The study of
QGP state and its phase transition are related with the various problems of the early
universe. The QGP is one of the most energetic topics in the modern hadron physics.

Except for the early universe the QGP state may be created in a core of neutron
star and high energy heavy ion collision experiments, however the only latter case has
a possibility for its measurement in a laboratory. The search for the QGP state from
the high energy heavy ion collision experiments had been examined since the end of
the 1980’s at CERN (European Laboratory for Particle Physics) and BNL (Brookhaven
National Laboratory).

For these experiments the several signals of the QGP formation are considered, for
example Strangeness and antibaryon enhancement [3, 4, 5, 6], ’exotic’ signatures of the
QGP [7], Photons and di-leptons pairs [8, 9], J/1 suppression [10, 11] and Mass shift
[10]. Many phenomena in the heavy ion collision experiment are consistent with the
above signals and suggest a formation of QGP.

At the beginning of 2000, CERN reported that the QGP state had been created in
the heavy ion collision experiment[23]. In these experiments, the .J/1) suppression[11] is
regarded as the key signal of QGP formation. Since c-quark is heavy ( m, = 1.15 ~ 1.35
GeV|[24]) c¢ pair are hard to be generated except by the primary collisions of nucleons in
the high energy heavy ion, i.e. the J/1 is not created with the thermal effects after the
QGP formation. Therefor it is expected that the effects of deconfining clearly appear
in this signal. Further investigation will be performed in RHIC project at BNL.

On the theoretical side, in spite of the various approaches|25, 26, 27], we are still
far from the definite understanding of hadron properties near the transition and the
fate of the hadronic states in the plasma phase. Since the phase transition changes the
relevant degree of freedom of the system, the model approach which a priori assumes

dynamical degrees of the system is difficult to treat physics near the phase transition.



4 1 INTRODUCTION

I investigate these problems using lattice QCD, which enables us to incorporate the
nonperturbative effect of QCD from the first principle.

The finite temperature field can be treated as the statistical ensemble, it is conve-
nient with the lattice QCD formulation. However lattice QCD has serious problems for
the finite density ( chemical potential ) systems [12]. In this case the fermion determi-
nant becomes complex for non-zero values of the chemical potential z and thus prohibits
the use of conventional numerical algorithms. This problem has never been solved at
the practical level. Thus the study of QGP with lattice QCD is almost restricted in the

finite temperature system.

Since the finite temperature phase transition is confirmed by the lattice QCD, the
determination of the critical temperature and the order of the phase transition have
been investigated [13].

From the recent study the T, =~ 270MeV and the 1st order phase transition are
reported at the Ny = 0 (quenched simulation) [14, 15],where Ny is number of flavor.

With the dynamical quark effects in the case of Ny = 2, the lattice QCD predicts
the T, =~ 170MeV and the 2nd order phase transition with the Wilson fermion [16],
on the other hand the T. =~ 170MeV and the cross over with the Staggered fermion
[17]. These inconsistent results of the Wilson fermion and the Staggered fermion are
one of the open question of the lattice QCD. In the case of Ny = 2+ 1 (u,d and s
quarks ) close to the real world, status is still a level of research and development. [18§]

With the lattice QCD it is possible to calculate the thermodynamical quantities of
QGP from the partition function of QCD, e.g. energy density and pressure [15, 16, 19].

For a long time hadron masses at finite temperature have been argued with the spa-
tial correlation which behaves an exponential decay with the screening mass [28]. This
quantity reflects manifestations of some symmetries in the finite temperature system,
e.g. chiral symmetry.

It is possible to discuss a fundamental degree of freedom in the QGP phase from
the spatial correlators. Some works report that the hadronic plasma mode dominate
just above T, [20, 21], however other work claims these behaviors are consistent with a
free quark gas picture at T > 1.27,. [22|. The spatial correlators give some suggestion
for the nature of QGP.

On the other hand, the study of the temporal correlation, which is related to the
pole mass, has been started rather recently|[29].

The previous work|[29] studied properties of hadrons composed of light quarks near
T.. They caught a sign of chiral symmetry restoration above T,., and a change of
correlators in temporal and spatial direction near the 7,.. From the discussion of wave
function, however, they find the same strong spatial correlation at 7" > T, as that of

below T, in other words hadronic mode at a long range survives in the deconfinement



phase. At present, there is no well-established way of lattice simulations to attack the
spectroscopy at 1" > 0. However, our recent work seems one of the best approaches to
the problem. It is interesting to apply this analysis to the heavy quarks. In this paper
I focus on the heavy quarkonium state, which plays an important role as a signal of the
quark gluon plasma formation[11, 10].

Our goal of the investigation is the prediction about .J/1 suppression or mass shift
of charmonium[10] as signals of QGP formation and the understanding of hadron prop-
erties and nature of QGP phase near the transition.

For the study of charmonium physics at T" > 0 on a lattice, there are several prob-
lems. Then I classify these problems into two category, and discuss them individually.

(i) Precise calculation of temporal correlator of charmonium at 7" > 0

(ii) Extraction of physical properties of charmonium from the correlators

Firstly I consider the former one. In the lattice QCD simulation at 7" > 0, I set a
temporal lattice extent to 1/7". At high temperature, one needs the large lattice cutoff to
work with the sufficient degrees of freedom in the temporal direction. In order to obtain
the detailed information of temporal meson correlators at 7" > 0, a high resolution in
temporal direction is needed. The large lattice cutoff is also necessary to study a
correlator of meson with the heavy quarks because of its rapid decreasing behavior. If
one tries to overcome these difficulties with straightforward way, the tremendous large
computational power is necessary. In order to get the sufficiently fine resolution with
limited computer resources, I use the anisotropic lattice, which has a finer temporal

lattice spacing a, than the spatial one a,.

In this work I adopt the same strategy as the previous work[29] which was tractable
to analyze light hadrons at 7" > 0. This strategy is as follows. Firstly the mesonic
operator are defined, then I observe its correlator and wave function (in the Coulomb
gauge) at T'= 0. Next I investigate how they are affected by the temperature. In order
to investigate the temperature effects for the state of interest, for example a ground
and excited state of charmonium, I have to make the good mesonic operator which has
the large overlap with the state. Because I should compare correlators at 7" > 0 within
shorter temporal lattice extent. The wave function gives hints for existence of mesonic
state at T" > 0. Especially I am interested in that of deconfinement phase. In the
case of charmonium this wave function is an important quantity concerning the J/1
suppression.

I prepare two sets of gauge configuration whose lattice spacing are different. T control
the temperature by changing temporal lattice extent N;. Then above investigation is

performed on these configurations.



6 1 INTRODUCTION

This paper is organized as follows. In the next section I define the quark action on
anisotropic lattice and discuss the dispersion relation of free quark and calibration of
quark field. Sect. 3 is the preparation for study of charmonium correlator. Here various
parameters of gauge configurations are determined and the calibration are performed. In
Sect. 4 T report the charmonium spectroscopy and construction of optimized operator
using variational analysis at 7" = 0. Sect. 5 describes correlators at 7' > 0 and the
measurement of the wave function and compare these with results at 7= 0. The last

section is the conclusion and discussion.



2 Quark action on the anisotropic lattice

2.1 Of(a) improved Wilson quark formulation

The O(a) improved version of Wilson fermionic action [31] (clover action) is widely
used in current lattice simulations. Though it is straightforward generalization of that
on isotropic lattice, anisotropy brings new ambiguity in addition to the choice of the
clover coefficient of isotropic action.

In the following, firstly the isotropic O(a) improved quark action is summarized as
an introduction. Then the anisotropic version are described in the next subsubsection.

2.1.1 On the isotropic lattice

Dirac fermion Lagrangian in the continuum Fuclidean space is

L= &C(VM‘DM + mc)¢c (]‘)

where 7,’s are 4 x 4 hermitian matrices satisfying the relation {v,.7,} = 26,,. The
physics is unchanged by the rescaling of the field. Since the fields 1 and 9 are treated
as independent variables, they can be changed independently.

Let us consider the isotropic lattice first. (1) can be regarded as the lattice action
enough close to the continuum limit. I apply following change of the fields:

Ye = [1 - %(’YMDM - mc):| v,

1/_1c = 1/_1 [1 - %(%Du - mc)} ) (2)

where, r is a constant called as the Wilson parameter, and a is the lattice spacing. (
One can use more general parameterization, but above changes are sufficient to derive

common form of the clover action.) With these changes, the Lagrangian (1) changes as

- ra ra
L = 1/} I:’)/MDM + me + ?mz — E’YMDZ + O(GZ) 1/}

- ra 1

= v {wDM +m— = <D2 + §gow,FW> + O(aQ)} . (3)
Here I put m = m(1 + %m,) and used the definition '
1

Ouw = _5[7;17%/]7 (4)
9F,, = i[D,,D,. (5)

With the discretization which is correct up to O(a?), this action has the same physical
contents as the continuum action up to this order. The term with the coefficient r is

! These conventions are different from ones in the original paper [31].
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a redundant operator. This term does not change the physics and is used to eliminate
undesired fermion doubler with appropriate value of the Wilson parameter r. Except
the term 7 go,, F),,, the action (3) is same as the Wilson fermion action. This additional
term is called as the clover term. (the name ‘clover’ comes from the clover-leaf definition
of F,,.)

Standard discretization of the derivatives are

1

Du - %(T—w - T—u): (6)
1

DZ — a_2(T+p’ + T_# - 2)7 (7)
I

where Ty, ¥ (x) = Uy (z)¢(x + ) and T_ 0 (x) = Ul(z — fo)ib(z — ). The field strength

F,, is expressed as
1

_4%

gFu(x) = Y T, (8)

W (@)
where (z, uv) specifies four plaquettes open at x in p — v plane. The operator Z makes
a matrix hermitian and traceless:

M—-M" 1
——— — —Im(TrM).
— — SIm(TeM) ©

Above definition of the F),, extract the linear term in F' from the plaquette U,, ~
exp(—igF ).

Up to now, the treatment is restricted to the tree level. With quantum effect, the
ratio of the term D? and clover term in the redundant term may change. This effect is
expressed as a new parameter csy, the coefficient of the clover term.

For numerical simulation, it is more useful to introduce the the hopping parameter
k = 1/2(m + 4r) and rescale the fermion field by the factor v/2x. With a common
choice r = 1 and putting a, = a = 1, the action reads

S =3 q@)K(z,y)qy), (10)

K(@.y) = 0uw—rY [(1=%)Uu(@)00tpy + (1 + 70U @ = 1)00s]
)2
RT
_?CSWQUW/F;W; (11)

This action is referred as the ‘Clover action” or ‘O(a) improved Wilson action’.
To keep the O(a) effect sufficiently small, careful choice of the clover coefficient cgw

is essential.
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2.1.2 On the anisotropic lattice

Now I consider the O(a) improved Wilson action on the anisotropic lattice. In this case
the action has not necessarily take the symmetric form in space and time. I can choose

the field rescaling as follows:

ra ra_ =
¢c = ll - I(’YMDM - mc) - T")’ : D} ¢7
- - ra ra_, =
Y = ll - Z(VuDu —me) — il D} - (12)

Here I introduce different parameters ' and r” for fermion field and its conjugate.
Though this is not a most general form, the nice feature of isotropic clover action is
kept at most. As a, I can take the spatial lattice spacing. These changes leads

Gl Dyt mee = D{ (0D, +mo) = Sal(,D,)* = m)
—W (7 D)’ +m - D]

a - — - —
— —(r"Y - Dy Dy + 1" y4 Dy - D)} . (13)

4

Observing the third line, it is useful to take ' = r”. Using the relations

, L
(7-D)* = D*+ 590
{7-D,uDs} = gouFu, (14)

I reach to the form

- r 1
L — 4 {%DM tm—"q <D2 + —gou,,FW)

2 2
raf=, 1 .. 5] _ra
-5 [D + §gUijFij +mey - D} - ZQUZAFZA . (15)

This expression is rather complicated to manage in general manner.
I therefore choose ' = 0. Namely I start with the action (3) and merely discretize
it with different lattice spacings for space and time. Now taking a; = a and a4 = a/¢,

where ¢ is the anisotropy, and putting a unity, eq. (3) is written as

-1 L o= T = 1
E == wg m+7D—§(D2+§gowa)

+6Ds — S(€D5 + EgouFu) | v. (16)

The bare quark mass m is in the unit of the spatial lattice spacing.
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For later convenience, I replace 7 with £~ only at the term with D2, and at other
place leave it as 7.

S - S i) [@ {0 W@, + (142U~ D)6, 4,}
_21_€ : {(T - 71)U1($)6x+2,y + (7’ + ,YZ)UZT(I o %)51:—%711}
— ch%Fu(fE)(sx,y - I—choijEj(a:)dw,y] V(y). (17)

Here I introduced the clover coefficients cg and cp, which are unity at the tree level.

Now let us transform above action into the hopping parameter form. I define

1
S SmTEr 1)
Ry = 555- (19)
Rescaling v — /2K,
S=> v(@)K(z,y)v(y), (20)

K(z,y) = 0py— re{(1 = 1)Us(2)3,11, + (1 +1)U](z = 1)3, 3, }
—rs Y_{(r = W)Ui@), 43, + (r+ W)U (@ = )5, 5, |

2

1
—rntcEgmiFM(a:)(Sx,y — TﬁscBigo—ijFij(x)ém,y- (21)

This is one of the form of the O(a) improved Wilson quark action on the anisotropic
lattice. There are several ways to define such an action on anisotropic lattice. The
action defined by P. Chen [33] is constructed using an anisotropy for the rescaling of
the field. On the other hand our action are kept as the isotropic form. These details

are mentioned in the next section.

2.2 Quark action for the charm quark

To treat the quark field on the lattice, I adopt the O(a) improved Wilson quark for-
mulation. To construct the quark action on the anisotropic lattice, I follow El-Khadra,
Kronfeld and Mackenzie[30], for the following advantages. They expand the lattice
Hamiltonian in the power of a, and determine the coefficient of each operator by match-
ing the lattice Hamiltonian with the the continuum one except the redundant operators.
The resultant action takes the same form as the clover quark action[31] in the limit of
m — 0. On the other hand, in the heavy quark mass region (m, > Agcp), the

effective-theoretical treatment of the quark action enables us to use it for such a quark
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on a lattice of moderate cutoff. Since the full quark mass dependence is incorporated,
the same form also covers the intermediate quark mass region, and then the small and
the large mass regions are smoothly connected. Although our main target in this paper
is the charm quark, it would be useful to take the other mass region into account for
the future applications. In addition to these advantages, their argument is naturally in
accord with the anisotropic lattice. They introduced the different hopping parameters
for the spatial and the temporal directions, and proposed to tune them so that the rest
and the kinetic mass take the same value. Such a treatment is inevitably required on
the anisotropic lattice to assure that the anisotropy of the quark and the gauge fields
coincide, especially if one employ the dispersion relation for the definition of the quark
field anisotropy.

On the anisotropic lattice, the quark action takes almost the same form as in the
Ref. [30] 2

Sk =Y (@)K (z,y)P(y), (22)

K('TJ y) - 5w,y — Kr {(1 - ’)/4)U4(.T)5I+47y + (1 -+ ’)’4)UI(.T — 21)6:5—21,y}
e Z {(T = 1)Ui(2)0, 45, + (1 + %)UZ'T (z — %)5x—%,y}

. 1
—RgsCE Z ZO'4Z'F4i(£L')(5$7y — T'RgCRB Z EOijEj($)(5x7y. (23)
tj
The spatial and the temporal hopping parameters, k, and k, respectively, are related

to the bare quark mass mg and the bare anisotropy parameter vy as follows.

1
o — 5 24
" 2(mo + vr + 37) (24)

where the my is in the spatial lattice unit. In the free quark case, the bare anisotropy
vr is taken to be the same value as the cutoff anisotropy & = a,/a,. In practical
simulation, the anisotropy parameter receives the quantum effect and should be tuned
to give the same renormalized anisotropy for the fermion and the gauge fields. This
“calibration” will be described later.

There have been used two choices of the value of the Wilson parameter r for the
anisotropic O(a) improved quark action. In this work, I adopt the choice[29] r = 1/£. In
this case, the temporal and the spatial directions are treated in the equal manner in the
physical unit. As the result, the tree level dispersion relation holds the axis-interchange

symmetry in the lowest order of p2. On the other hand, this choice decreases the masses

2 The notation in this paper is slightly different from the Ref. [30] .
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of doublers which are introduced by the Wilson term to eliminate the unwanted poles
at the edges of the Brillouin zone. The dispersion relation is examined in the later part
of this section. Alternative choice, r = 1, are adopted in the Ref. [32, 33, 34]. In this
case, the contribution of doublers would not cause any problem, in the cost of manifest
axis-interchange symmetry. Since I aim to develop the form applicable to the whole
quark mass region, r = 1/£~! seems preferable especially in the light quark mass region.

Here it is useful to define k so that which has the same relation with the bare quark
mass mg as the isotropic case:

%:?10_2(””*37"_4) (= 2(mo +4)). (26)
For the light quark systems, the extrapolation to the chiral limit would be performed in
1/k. The coefficients of the clover terms, cg and cp, depend on the Wilson parameter
r. In our choice r = £71, ¢ and cp are unity at the tree level.

I apply the mean-field improvement proposed in the Ref. [35]. On the anisotropic
lattice, the mean-filed values of the spatial link variable u, and the temporal one u, are
different from each other. The improvement is achieved by rescaling the link variable as
Ui(x) — Ui(z)/us and Uy(x) — Uy(x)/u,. This replacement leads the following values
for the coefficient of the clover terms.

1 1

ua_u%’ cp = u_3 (27)

Cgp —

The determination of mean-field values of the link variable u, and u, are described in
the next section.

In this paper, our target mass region is around the charm quark mass. The temporal
cutoffs in this work are 4.5 and 6.4 GeV, and well above the charm quark mass. For
these quark mass and a!, the effective-theoretical treatment would not be necessary to
be applied. Such consideration will be called for the calculations containing the b-quark
on the same size of lattice. In the effective-theoretical treatment, the ratio of the spa-
tial and the temporal hopping parameter is tuned so that they give correct dispersion
relation of the nonrelativistic quark[30]. On the anisotropic lattice, the calibration au-
tomatically incorporates this condition if one use the nonrelativistic dispersion relation
as the anisotropy condition.

2.3 Dispersion relation of free quark

Now I consider how the dispersion relation of the free quark is changed by the intro-
duction of anisotropy. Observing the action (23), one notices that the larger anisotropy

¢ causes the smaller spatial Wilson term. Then the question is how the contribution of
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the doubler eliminated by the Wilson term becomes significant. The action (23) leads
the free quark propagator,

S(p) = !

_ ] (28)
ivasinpy +1 ¢y - S +my+ (1 —cosps) + %7‘@5

where ¢ = 71, my = mo(, S; = sinp; and p; = 2sin(p;/2). The correlator C'(p,t) for
t>0is

3 ~d Z-
Cn = [ ESmen

e_E(ﬁ)t 1

u(p) 2sinh E(p) {

yasinh E(p) —i¢7 - S + u(p) + cosh E(p)}  (29)

—2
where u(p) = my+ 1+ r(p /2.
Then the dispersion relation of the free quark is
—, -2
¢*S? + (my + 57Cp )?

coshE(p) =1+ —
2(1+my+ 57¢p )

(30)

Neglecting the higher order terms in p and in a, the relativistic dispersion relation
E? = m?+ (?p® holds for the small quark mass. (m? = m?(1 —m,;), and m, is the bare
parameter.)

Fig. 1 shows the dispersion relation (30) at & = 5.3 and 4.0 for various values of
my. Now let us consider the practical cases that a;' = 4.5 GeV for ¢ = 5.3 (Set-I)
and a' = 6.4 GeV for & = 4.0 (Set-IT). These values are obtained in our numerical
simulations, and described in the next section. In the heavy quarkonium, the typical
energy and momentum exchanged inside the meson are in the order of mv? and muv
respectively[36]. For the charmonium, v? ~ 0.3, then typical scale of the kinetic energy
is around 500 MeV. It is noted that m; ~ 0.3 for Set-I and m; ~ 0.2 for Set-II correspond
to the charm quark mass. Let us consider two quarks inside meson with opposite
momenta p = +7/a. Then 2(E(p, = a/w) — E(0)) ~ 0.5 GeV and ~ 1 GeV for Set-1
and Set-II respectively. Although Set-I lattice may not be free from the systematic
effect, Set-11 would be successfully applicable to the low-lying charmonium system.

For comparison, I also examine the light quark mass region. For Set-I, m = 0.02
0.06 corresponds to 90-270 MeV, which is used in the Ref. [29] as the light quark mass
region with the anisotropic Wilson quark action with » = 1. E(p) — E(0) rapidly
decrease at the edge of the Brillouin zone, and the height at z = a/7 is around 300
MeV. For two quarks with momenta p = +a /7, additional energy of doublers is ~ 600
MeV, and again seems not sufficiently large compared with the typical energy scale
transfered inside mesons. In the case of Set-II, this value increases to 1.4 GeV, and

seems to be applicable to the meson systems without large systematic effect.
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2.4 Calibration of quark field

On anisotropic lattice, the anisotropy of quark configuration &z must be equal to that
of gauge field &.
E(vasr) = Er(ves F) (31)

Since & and & are function of 745 and yF in general, a nonperturbative determination
of the combination of 75 and «r which satisfy the condition (31) requires much effort.
In the quenched case, however, these determination are rather easy to be performed,
because £ can be determined independently of yr. After the determination of £, one can
tune vr so that the certain observable satisfies the condition (31). I call this procedure
as “calibration”.

There are several determinations of £. In the Ref. [29], the ratio of the temporal
to the spatial meson masses, & = m,/m;, is used as such a observable. However
this is not suitable for the present case, since the charm quark mass is larger than
or comparable with the spatial lattice cutoffs. In order to determine &g, 1 use the
dispersion relation of the free meson[32, 33, 34]. For a heavy quark, one may use the
nonrelativistic dispersion relation, £ = m + p?/2mé&%. In this paper, I alternatively
use the relativistic dispersion relation of meson for the calibration. This form is also
available for the light quark mass region.

I assume that the meson is described by the following lattice Klein-Gordon action.

S = Z—qﬁ ) [ =62 DF = D* +mg] é(x), (32)
2%

where my is in the unit of a,. Then the free meson satisfies the dispersion relation

cosh E(p) =1+ %(p2 +m). (33)
P

Using this relation, one can determine the anisotropy &g as

=2

2 p
& = 2(cosh E(p) — cosh E(0)) (34)

This condition forces the axis-interchange symmetry to the meson field.
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Figure 1: Dispersion relation of anisotropic free quark. Top figure is of Set-I, bottom
one is of Set-II.
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3 Lattice setup

3.1 Gauge configuration

The numerical calculations performed on the two sets of anisotropic lattices[37], one
is with the standard plaquette action and the other is with Symanzik type improved
action at the tree level[38]. These actions are represented with the following form;

So = 2= 3 [enll= Pylw) + enl2 = Rife) = Rya)
+67¢ 23 [c11(1 = Fu(x)) + c12(2 — Rua(z) — Rui(2))] (35)

where the plaquette P, (z) and rectangular loop R, (z) are defined as follows,

P = %Reﬂ[Uu(x)U,,(:c L ULz + D) U ()] (36)
R, = lReTr[UM(a;)UM(a; + U, (z + 20)Uf (z + 0 + @)U (z + 2)Uf (2)]. (37)

3
The standard action is the case with c;; = 1 and ¢;5 = 0, and the improved action

is 11 = 5/3 and ¢;2 = —1/12. The Set-I is the same configurations as used in the
Ref. [29]. The parameters for these configurations are summarized in Table 1. These
parameters are adopted so that the spatial and temporal lattice extent are about 3 fm
respectively.

Both numerical calculations are done on the quenched configurations which are gen-
erated by the pseudo-heat bath algorithm with 20,000 thermalization sweeps, the con-
figurations being separated by 2,000 sweeps. These configurations are fixed to Coulomb
gauge. The statistical errors are estimated using the jackknife method unless mentioned
explicitly.

3.2 Determination of the lattice constants

I determine the parameters for the gauge field configurations, renormalized anisotropy
&(= a,/a;), spatial cutoff scale ;! and mean-field values. At 7" > 0T have to determine
the critical temperature.

In this section I show the detailed analysis for Set-II.

Set C11 C12 size ﬂ Ya # conf.
Set-1 1 0 123 x Ny 5.68 4.00 60
Set-IT 5/3 -1/12 162 x24x N, 4.56 3.45 120

Table 1: Simulation parameters for the gauge configurations.
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3.2.1 Renormalized anisotropy

I define the ratios of the Wilson loop on spatial-spatial (co) and spatial-temporal (o)
plane[39, 40, 41].

Ry(r,z) = Wye(r,z)/Wye(r +1,z), (38)
R, (r,t) = Wy (r,t)/Wer(r +1,t) (39)

Then ¢ is determined so that the matching condition, R,(r,z) = R,(r,t = &x), is
satisfied. Figure 2 shows R, (r, z) and R, (r,t) at each r, then R,(r, ) are rescaled with
& = 3.95 in these figures.

In practice I search for a minimization point of L(&),

B Rs(r,éx) — Ry(r,t)
MO~ L amy T amy

T,x

(40)

where d(Rs) and d(R;) are statistical error of Ry and Ry, and Ry(r,t) in eq.(40) is
interpolated with the cubic spline in respect of t. The range of summation over r and
x is determined by the following policy.

e For removing cutoff effects, I exclude the data for r =1 and r x < min(r x z)
e At each r the maximal z, maxz, are determined by hand from Fig. 2

Figure 3 shows the min(r x z) dependence of the renormalized anisotropy £. From the
Fig. 3, xi gives a stable value at r x = < 8, then I conclude £ = 3.950(18) for Set-1I. T
have £ = 5.3(1) with the same analysis for Set-I.

3.2.2 Cutoff scale

Cutoff scales are determined from the static quark potential using the physical value of
the string tension. In order to calculate the static quark potential efficiently, I use the
Bali and Schilling’s smearing technique [48] with the coefficient of the staple summation
¢ = 2.30. I prepare the smeared configurations up to 40 smearing steps every 2 steps.
For each spatial distance “r”, I adopt a number of smearing where the overlap function
C'(r) is the nearest to unity, where the C(r) is defined by the following ansatz.

W (r,t) = C(r)exp (=V(r)t) (41)

Then the static quark potential V(r) is extracted from the fitting Wy (r,t) on the
smeared configuration to the Eq.(41).

Figure 4 shows the effective mass plots for each r.

In order to extract the string tension o from the static quark potential V(r), I use
the following potential fitting ansatz,
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Figure 3: The min(r x x) dependence of the renormalized anisotropy &.

V(r)=A+ % + or, (42)

where T use the V(r) data which has larger C'(r) than 0.80 ( in practice up to 9as).

In this analysis I try to fit with 3-parameters and 2-parameters, in the later case «
is fixed to —m/12£. For each case I calculate with R,,;,, = 1.0as ~ 4.0a,. The fitting
results of the Coulomb term coefficient a and the string tension ¢ are shown in Fig.
5,6.

Then the fitting results are stable at R,,;;; > 2.8a,. The static quark potential
and 3-parameters fitting results are shown in Figure 7 and these relative deviation is in
Figure 8, where the relative deviation is defined in Eq.43.

Finally I summarize the results of the static quark potential in Table 2.

With /o = 427MeV[42], the spatial cutoff scales are a;' = 0.85(3) GeV (Set-I)
and 1.610(14) GeV (Set-IT) respectively.

Viela(r) = (43)

3.2.3 Critical temperature

In order to determine the critical temperature, I calculate the Polyakov loop and its
susceptibilities at Ny = 22, 24,25 and 26 for Set-II.
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Set A a o x?/d.o.f
Set-T 0.104(16) -0.041(24) 0.0480(23) _ 2.45
Set-IT 0.1599(25) -0.0587(49) 0.01781(20)  4.34

Table 2: The results of static quark potential. I do not show only for Set-IT but also
for Set-1.

N; Polyakov loop susceptibility bin size
22 0.0848(18) 0.000094(20) 3,000
24 0.0471(78) 0.00036(18) 6,000
25 0.0139(19) 0.000093(30) 2,000
26 0.0127(12) 0.0000575(94) 2,000

Table 3: The Polyakov loop and its susceptibility for Set-II.

These quantities are measured every 10 sweeps up to 40,000 sweeps (20,000 sweeps
for N, = 22), thermalization is 10,000 sweeps (5,000sweeps). Error is estimated by the
jackknife method. The histories of rotated Polyakov loop are summarized in Fig.9.

For N; = 24 and 25 I carry out the Histogram method [49], then T get the results of
Fig.10.

From these analysis of Polyakov loops and its susceptibilities, I find that the tem-
perature of lattices with V; = 18 (Set-I) and 24 (Set-II) are both just above T.. Then
I estimate T, = 250 ~ 260 MeV from the temporal cutoff scale on our lattices. These
estimation are consistent with the other quenched lattice results. I prepare the finite
temperature gauge configurations at just below 7, just above T, and about 1.57; for
each sets. These results are summarized in Table 4.

Here I notice that the hadronic correlator depends on which the sector Polyakov
loop stays in Z3 space at T' > T,.. Since I treat the quenched QCD as an approximation
of the full QCD, T choose the real sector for the value of Polyakov loop at T" > T..

Set 3 a; (GeV) a'(GeV) N(T/T.)
Set-T 53(1)  0.85(3)  4.5(2) 72 (~ 0), 20 (0.93), 16 (L.15), 12 (1.5)
Set-IT 3.950(18) 1.610(14) 6.359(62) 96 (~ 0), 26 (0.93), 22 (1.10), 16 (1.52)

Table 4: Scale parameters for the gauge configuration. The &p, a;! !

~ and a7 are mea-
sured on the configurations at 7= 0 ( N, = 72 (Set-1), 96 (Set-1I)). Here the temper-

atures are roughly estimated in the unit of T..



22

effective plot

effective plot

effective plot

0.4

o
w

o
)

0.1

0.4

o
w

o
)

0.1

0.4

0.3

0.2

0.1

0 10

lype

=1:(1,0,0)

e

[Ce ]
Secscceeseescmany §

66@ fol}
@ee@@eooooQo@@mmm@g§§§

6996996660000000°.®mm

9999eeeeooooooooooogmmﬁ§§§§§

°

Secocccceseseesssssesnnn 17y

[Ceco0cccccessesesesssssccacaa

Coccoccceesesesssessseecocscat

6999666660‘000000000‘..0..000.04’
0 10 20 30

r

=3:(2,1,0)

lype

@99@@@®®00311i§§§§

e
eg i
o
Cecoccceeeseta gy §§§%

e
Geeee@eoooooooooot®®mmmﬁ

699966669...........@9@@@

20 30

r

lype

=5:(2,1,1)

@@@z@@

®®®‘II§§§§

e
Se
©occ0ceeeecnll 5

°
Ceoccc00000000000000TT 50

9996999669666....000000.0.@@@1}

20 30

effective plot

effective plot

effective plot

3 LATTICE SETUP

lye=2 1 (1,1,0)
0.4 T
e ®@®@@ l
@
=l le§§§
e
e Cesog,
e, bl 2 X3 E%
e
@@966@
03[ %e cesenssd
31 Ceg,
. €oe0cce00esTpTd
e
e
©SccecscceescvzsnTngy 00
©
e
©eoccco0cc0ceseeecceEeTUD
0.2 7
©occocc0cceeessessescoccsas
Cocoo0c0ce000000000050000068
0.1 > !
0 10 20 30
r
o=t (1,1,1)
0.4 =
EN .
B3 COsogy
)
oo, *8eg
&
e ®®®'°“I§§
03} ®°s 1
9@@@@@@ o]
cooeeoe88l(
e
e
e
©6coccceeeessclup
e
©
02 L 9eeeeeeeeeoooooooo®®@mmm$ ]
Cecococococceesessesssccccces
0.1 > !
0 10 20 30
r
iype=6 : (2,2,1)
0.45
®e
=
®®®mmm§
33 E
° .
03| e 1
e
@e®®@®®@‘!1§§ 4
. T
e
6699@@@@@@@e®003311§§
0.25 | §§ %
°
Coce0000c0000000000000088 ;U]
0.15 L y
0 10 20 30

Figure 4: The effective mass plots of the Wilson loops.



3.2 Determination of the lattice constants

estimation of fitting range

005 ———— —_———————
O 3-parameter fitting results
S 12§
o 0r 1
o
S
(]
(o]
8 L
€
e
€
2 -0.05 - .
8 - = [ T T
“r
= @ I
hos
_ol L L L L 1 L L L L 1 L L L L 1 L n 1 n
0 1 2 3 4 5

(overlap is more than 80% )

rmin

Figure 5: The fitting results of the Coulomb term coefficient.

0.021 ——
0.02 [ ]
L ﬁg 4
«. 0019 |- ]
. i ]
S i ]
5 i @O ]
2 0018 - * % ]
e [ =+ ﬁ ]
L X T
2 i B %ﬂ + 1
@ 0017 [ 1
i o
0.016 - < * fixed a=-T012€
[ O 3-parameters fitting
0015 L
0 1 2 3 4 5 6
r., (overlaps are more than 80%)

Figure 6: The fitting results of the string tension.



24

V(r)

(VIN=-Vi(MIV(R)

Figure 8: The relative deviation

3 LATTICE SETUP

04 1
g P
r-range: r_, =2.828 (in overlap>80% )
0.3 |
0.2 £=3.95(2) .
I a,1=1.610(14)GeV
=
01 1 1 1 1 1 1 1 1 1 1 1
0o 1 2 3 4 5 6 7 8 9 10 11 12
r
Figure 7: The result of static quark potential.
0.10
| 3-parameter fitting
0.05 - r..=2.828 (overlaps are more than 80% ) 7
i 3d %; %% % i
0.00 s BT
I s g [N
= =
-0.05 - i
=
_010 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

of the static quark potential.



3.2 Determination of the lattice constants 25

N, =24
\l
|
20000 30000 40000
N, = 26
| |
20000 30000 40000
sweep

10000
10000

0
40000 O
0

A5
40000 O

0.15
-10.1
0.05 -
_ O 1 -
0.05

20000 30000

N, = 25
20000 30000
sweep

10000
10000

|
— To) o
> Q
o

doo| noxeA|od doo| noxeA|od

|
0

0

0.15
0
.0

0.15
0

Figure 9: The history of the rotated Polyakov loop.



26 3 LATTICE SETUP

0.001 ‘
L _ |
0.0009 F Tl | 1
I . _ . ON,=25
0.0008 - -~ . ON=24 |
2 I - i - - - - simulation point ]
= 0.0007 - o ]
= . |
o [ |
8 0.0006 - T ! 1
9 I = ‘
@ L o ! ]
cg}_ 0.0005 [ ”7— i o ] m o : - 7
> 00004 | - o't ‘ TIT7o 1
g I 0 |
[ | |
%* 0.0003 - m | -
g | m L | |
mt | e
0.0002 [-| - 1 TOap
r 1 ! § Tm
0.0001 - i 502 i
L O B
0 PRy a¥ny= () RN R 1
4.5 4.52 4.54 4.56 4.58
B

Figure 10: The results of the Histogram method for the Polyakov loop susceptibility.



3.3 Calibration result 27

3.2.4 Mean-field value on the anisotropic lattice

I state the calculation of mean-filed value on the anisotropic lattice for the mean-field
improvement of the clover coefficients.

There are two commonly used methods. One is determined from the expectation
value of plaquette. This is widely used for its easiness to measure. On anisotropic

lattice these are determined as follows.

b = o (ReTrPay(z))? (44)

Sy

|

1
us = 3 {ReTrF(z))
The other is the trace of link calculated in the Landau gauge.
1 1
Uy = g(ReTrUi(x», Uy = g(ReT‘rU4(x)) (45)

In the former case u, is greater than the unity on our lattice. Then the latter definition
seems more reasonable. In this work I determined the mean-field values in the Landau
gauge.

The Landau gauge fixing is realized by maximization of Eq.(46).

> ReTr (Uy(z) + Us(z) + Us(z) + calUs(x)) (46)

Here, the temporal coefficient c,; appears on the anisotropic lattice. 1 adopt the self-
consistent mean-field improvement of cy. As the tree level I chose ¢, = £2. Using the
mean-field improved ¢y = £2u, /u. 1 calculate the mean-field values recursively. I per-
form these calculation with 20 configurations. In our case, the result of 3rd measurement
is consistent with the input u,/u, which is determined from the linear interpolation of
the tree level and first mean-field improvement result. These results are summarized
in Table 5 together with the mean-field improved cg and cg. Here I mention that the
mean-field improved 7 give the reasonable estimation for £ within 1% (Set-1) and 6%
(Set-1I) error.

3.3 Calibration result

I now turn to the calibration of quark field. It is performed by the Eq.(33) with the
momentum p = (0,0,0) and (0,0, 1) for each mesonic channel, pseudoscalar (Ps) and

Set  ug Us CE CB
Set-I  0.75050(16)  0.992436(13)  1.7889 2.3656
Set-1I  0.812354(92) 0.9900788(90) 1.5305 1.8654

Table 5: Mean-field value of link variable and mean-field improved clover coefficients
for each sets.
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vector (V). These results are summarized in Fig. 11. These calibrations are performed
at the parameters which correspond to the pseudoscalar mass mps ~ 2.6, 3.0 and 3.4
GeV respectively.

The detailed definition of meson correlator which is adopted here is shown in Sect. 4.1
In these calculations I use the smeared source function which is determined from the
wave function at 1/k = 9.868 (Set-1) and k = 8.797 (Set-II). Here I mention that the
shape of wave function has very weak s dependence.

From the Fig. 11, T find that the vz dependence of {r is almost linear and x de-
pendence of its slope is small. The v which is determined from the pseudoscalar and
the vector gives consistent value within the statistical error for each k. Especially g
for Set-II are in good agreement with the pseudoscalar and the vector. I determine
the yr which satisfies the condition of Eq.(31) from the interpolation with the linear
fitting. The error of v is estimated from the error of £ and &r. These calibration
results are summarized in Table 6. Here I mention that the mean-field improved yg
give the reasonable estimation for £ within 9% (Set-I) and 1% (Set-II) error.

1/k Ks gla
10.300 0.093545 3.629(91)
Set-I  9.868  0.096098 3.703(84)
9.480 0.098599 3.765(79)
0.041 0.110350 3.251(52)
Set-IT  8.797 0.113121 3.262(49)
8.590 0.115564 3.272(47)

Table 6: Calibration results for Set-I and Set-II. These parameters satisfy the condition
of & = & within the statistical error for the both mesonic channel. The error of v is
estimated from the error of & and &p
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4 Results at Zero temperature

4.1 Meson correlators

The mesonic operator which is used in this paper is in the following form,

O (Z.t) = S w@a(Z, t)yarg(Z+ . t), (47)

—

Y

where w(¥) is a smearing function and vy, = 5 and 7 for the pseudoscalar and the
vector respectively. Using these mesonic operators I construct the meson correlators
G4%,7“(t) in the Coulomb gauge as the following,

G = (05 (2005 0) (48)

z

According to our strategy, I need to construct a good operator which has large overlap
with the ground state ( or the excited state ) of heavy quarkonium. For this purpose I
examine two types of correlators.

In the first type of correlator I use the smeared source and point sink ( w'(y) o< 6(%)
), which is already used in the calibration described in Sect. 3.3 . This source function
is defined from the measured wave function w(Z)[43] so that the smearing reflects the
actual distribution of quark and anti-quark. This smearing procedure works well for
the suppressing higher excited state to the correlator. The wave function is well fitted
to the form

w(y) o exp (—aly]"). (49)

The determined parameters a and p are used to generate the smearing function. These
correlators are used in the charmonium spectroscopy in the next subsection.

For the study at 7" > 0 I need more systematic optimization of the correlators. I
apply the variational analysis, and regard the diagonalized correlator as the optimized
correlator. This analysis can extract not only the ground state but also the excited state.
In this analysis I use the correlators with smeared source and sink, whose smearing
functions are determined by solving the Schrodinger equation with the potential model.
This technique is mentioned in Sect. 4.3 .

4.2 Charmonium spectroscopy

I show the results of spectroscopy for the heavy quarkonium at 7" = 0, which is the basis
of the study at 7" > 0. In this section I also examine how our action works in the heavy
quark system. The pseudoscalar and the vector meson channels are measured with the
parameters listed in Table 6. Figure 12 show the effective mass plot at 7" = 0. In this

calculation I use the correlators with the smeared source introduced in the previous
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1/k Mp, My HFS
10.300 0.77934(75) 0.79146(83) 0.01213(26)

Set-T  9.868  0.68235(77) 0.69600(88) 0.01365(30)
0.480 0.59381(78) 0.60917(91) 0.01535(35)
0.041  0.54170(39) 0.55050(43) 0.00880(15)

Set-IT  8.797  0.47236(39) 0.48238(44) 0.01002(16)
8500 0.41029(40) 0.42182(45) 0.01152(18)

Table 7: Spectroscopy for Set-I and Set-II with parameters in Table 6. HFS means the
hyperfine splitting for a heavy quarkonium, mp, — my. There results are shown in a,
unit.

subsection. Here the parameters for the smearing function are a = 0.7096, p = 1.1267
for Set-I and a = 0.2978, p = 1.1918 for Set-II. The plateaus of the effective mass appear
beyond t ~ 10 (Set-T), 20 (Set-IT). Concerning the determination of smearing function
our choice works well in heavy quark system. On the other hand in the light quark
system the wider smearing function enhances the ground state contribution[29]. In the
small £ region, contributions from the excited states remain. However this small ¢ region
is the main stage of the study at 7" > 0. In order to estimate the temperature effects of
the ground state contribution at the high temperature, I need further improvement of
the mesonic operator. In the next subsection more systematic study with variational
analysis is examined.

L fit the correlator to the single exponential form at ¢ = 30-36 (Set-I), 40-48 (Set-11I).
These results are summarized in Table 7. The parameters with 1/k = 9.868 (Set-I) and
1/k = 8.797 (Set-1I) in Table 7 correspond approximately to the charm quark. There-
fore I study the meson correlators with these parameters in the successive calculations.

Figure 13 shows the hyperfine splitting for charmonium (1,4, —m,,). For compar-
ison, results of other group are shown simultaneously. Here I notice that these results
largely depend on how to determine the lattice cutoff scale. Results of Fermilab action
on the isotropic lattice[44], whose scale is determined from the physical value of the
string tension, are roughly consistent with our results. Results of heavy relativistic ac-
tion on anisotropic lattice[33] and NRQCD[45] show the similar tendency. These scales
are determined from the Sommer scale and the 1P-1S splitting respectively. However,
all the quenched results are roughly a half of experimental results 117(2)MeV[24]. The
differences from the experimental value of the hyperfine splitting can be partly explained
with the dynamical quark effects[46].
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4.3 Variational analysis

I examine the variational analysis for constructing more optimized operators. With this
analysis I can construct series of operators which have better matching to the states of
interest.

Here I explain the principle of variational analysis briefly. Firstly, I suppose that
the state generated by mesonic operator on the lattice is the linear combination of
eigenstates for Hamiltonian. Practically I assume that the generated states consist
of N linearly independent states. Then I prepare N mesonic operators, which have
the same quantum numbers. These operators are constructed with different smearing
function w(Z) in Eq.(47). Then I get the N x N correlator matrix, C%(t), as the
following,

Ciit) = Y05 (2005 (0). (50)
7
Because of the symmetric nature of this matrix, I can get the diagonalized correlators
which are optimized correlators for the state of interest.

In our study this variational analysis is applied in the minimal space including the
ground, such as 1st excited and 2nd excited state. I have to prepare the smearing func-
tions so that this analysis works well in this condition. Thus I construct the smearing
functions ¢;(r) using the Schrodinger equation with the potential model,

1 &2 I(l+1)

Impdr:  2mpr?

+ V()| u(r) = Eylr),
w(r) = rou(r), (51)

where V(r) is the static quark potential measured on our lattice and mp = 1.5/2 GeV.
The spin interaction is neglected and I calculate only S-state (I = 0). Figure 14 shows
the lowest three solutions ¢g(r) and the measured wave function at 7' = 0 for Set-II.

I calculate the diagonalized correlator using the three types of smearing function in
Fig. 14. The orthogonal matrices are obtained at each ¢, then I adopt the averaged one
as the orthogonal matrix which is used for the calculation of the diagonalized correlator,
which is shown in Fig. 15 and 16.

With the orthogonal matrix I obtain the diagonalized correlator. Then its effective
mass plots are shown in Fig. 17 and 18. I fit the these data at t = 10-36 for Set-I and
t = 14 48 for Set-II, and get the results summarized in Table 8.

The extracted mass of 1S state are consistent with previous results in Table 7. In
the Table 8 results are presented in a, unit and physical unit for each sets, where the
latter case includes the error of a,.

The results of 2S-1S splitting are consistent with the experimental values within a

statistical error. This is in contrast to the case of the hyperfine splitting in which I
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Figure 14: Smearing functions for the variational analysis for Set-1I. These are calcu-
lated with the Schrodinger equation with the potential model. The circle and square
symbols are the wave function measured on the lattice at 7" = 0 for the pseudoscalar

and the vector respectively.

obtain the half of the experimental value, 2S5-1S splitting is in good agreement with

experimental value.

The variational analysis can directly extract one of correlators for the ground and

excited states. Therefore this analysis is useful to investigate the excited state of hadron.

In the next section I mainly use this analysis at 7" > 0.

V(QS) Mpses)y — Mpsasy  Myes) — Myas)
Set-T 0.7688(34) 0.7794(38) __ 0.0863(30) 0.0843(33)
(NIeV) 3460(155) 3507(157) 391(22) 382(23)
Set-11 0.5641(66) 0.5696(73)  0.0913(64) 0.0869(70)
(MeV) 3622(58) 581(41) 553(45)
Exp. value (NIeV) [24] 3685.96(9) 614(5) 589.07(13)

Table 8: Spectroscopy for 2S state and 2S-1S splitting of charmonium. For each sets
the upper values are in a, unit and the lower one are in physical unit. The error in

physical unit includes the error of a.
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Figure 15: The results of orthogonal matrix elements for Set-I1. The top figure is the

result of pseudoscalar meson and the bottom one is that of vector meson.
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Figure 17: Effective mass of diagonalized correlator for Set-1 at 17" = 0. The top figure
is the result of pseudoscalar meson and the bottom one is that of vector meson. Only
ground and 1st excited one are shown because of the large noise for the 2nd excited

state.
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5 Results at Finite temperature

5.1 Temperature dependence of correlators

In accordance with our strategy the optimized operators which are constructed at 7" = 0
are applied to the case at T > (0. The optimized operators are defined from the varia-
tional analysis in the previous section. I construct the correlator matrix at 7' > 0 with
the same basis ( smearing function ) as 7" =0 ( Fig. 14). Then the orthogonal matrix
defined at T'= 0 are operated to this correlator matrix, and its diagonal correlators are
discussed in this subsection. Here I call these correlators as Cy(t), Ca(t) and Cs(t) in
the order of their effective masses. Figure 19 and 20 show the effective masses of C(t)
and Cs(t) , although the effective mass of C(t) is too noisy.

Below T, ( Ny =26 ) I can find the plateau of effective mass. The ground and the
excited states seem to be observed below T.. The masses of these states are almost
the same as T" = 0 or slightly larger. Therefore I conclude that these correlators have
little thermal effects at this temperature, and the spectral structure seems to keep the
form at T' = 0. However it is difficult to identify the plateau precisely and determine
the mass quantitatively with the present statistics. More detailed analysis with higher
statistics may open a stage to discuss the potential mass shift of charmonium near to
the T,[10].

Above T. ( N; = 22 and 16 ) effective masses have no clear plateau in whole ¢
region. These behaviors at least signal significant change of correlators when the system
crosses T,.. This behavior appears noticeably in the effective mass of Cy(t). In the case
of the light quark system investigated in the Ref. [29], the effective masses increase as
T in the pseudoscalar and the vector channels. The observed behavior in present work,
however, shows qualitatively different nature of the correlators.

As the comparison with above results, Fig. 21 shows the effective mass plots at
T > 0 for the correlators with smeared source by the wave function and point sink,
described in Sect. 4.1 .

These results are consistent with the variational analysis. The remarkable change
in the vector channel is apparently seen. Then the order of effective masses for the
pseudoscalar and the vector mesons is reversed above T, the same as the case of free
quark. This phenomenon is also brought about in the system of light quarks[29].

From the results of this subsection, I observed that the temporal mesonic correlators
change drastically when the system goes through the deconfining transition. I can con-
sider the several pictures which can explain (consistent with) the change for correlators.
One of these pictures is that the mesonic bound state disappear in the deconfinement
phase. This is the most interesting case as stated in our motivations. In order to discuss
this picture I investigate the correlation between ¢ and ¢ in the next subsection.
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5.2 Wave function

In this subsection the c¢ bound state at 1" > 0, especially in the deconfinement phase,
is discussed in the light of “wave function”. The definition of the “wave function” in
the Coulomb gauge is as follows.

> (@@ + 7 ) yaq (1) O}, (0) (52)

z

g

=

=
I

Here this definition is the same form as the wave function at 7" = 0. This wave function
shows the spatial correlation between ¢ and ¢, and gives us a hint of the mesonic bound
state from its ¢ dependence. In the case of free quarks, ¢¢ has no bound state, then
the wave function ought to broaden with ¢. On the other hand suppose quark and
anti-quark form a bound state, the wave function holds the stable shape with ¢. 1
can discuss the existence of such the bound state by observing the t-dependence of the
wave function. For this purpose I compare the correlation at spatial origin with another
spatially separated point at each t. Therefore I define the wave function normalized at

the spatial origin, ¢ (7, 1), as follows,
(53)

From now on the wave function denotes this normalized definition.

Since the question is whether wave function has a stable shape or not, it is not
necessary to use the optimized operator. Therefore the smeared source function with
exponential form defined as with Eq.(49), is used for the analysis of t-dependence of
the wave function. Fig. 22 shows the results at T" > 0 with the smeared source function
which is slightly wider than the observed wave function at 7" = 0. The wave functions
composed of free quark propagators are also shown together.

As is shown in the Fig. 22, the behaviors of the observed wave functions are clearly
different from that of the free quark case at each temperature and in each mesonic
channel. In the free quark case the wave functions are broadening as t as expected. On
the other hand, the observed wave functions are stable with the slightly narrower shape
than source function. These behaviors are independent of the source function.

For a visible expression, I define the averaged orbital radius, rq, as

ro(t) = Z 3220 (2, 1), (54)

where I suppose a spherical symmetric wave function and the sum is over z axis. These
ro(t) of Set-T and Set-IT are shown in Fig. 23. Figure 23 shows the ¢ dependence of rq in
the physical unit, where the error estimation takes into account the error of a, and a..

These results for Set-I and II are roughly consistent with each other. The behavior of
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observed rq are obviously different from free quark case, and shows the stable behavior
with respect to t. This asymptotic value for the vector channel is larger than that of
the pseudoscalar.

Below T, ry for each channel are almost same as the case of T'= 0. At T" ~ 1.5T,
the observed rq are slightly larger than that of 7" < T,.. However the wave function,
even in the deconfinement phase, seem to have the stable ry independently of the source
function. Therefore I conclude the same strong spatial correlation as below T, survives
in the deconfinement phase at each mesonic channel.

The results of this subsection seem to suggest the presence of the hadronic state
in the deconfinement phase, at least up to 1.57,.. This is the opposite situation to the
picture mentioned in the previous subsection.
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Figure 19: Effective mass of diagonalized correlator for Set-1 at 7" > 0. Orthogonal
matrix at 17" = 0 are used for diagonalization. The top figure is the result of the
pseudoscalar meson and the bottom one is that of the vector meson. Because of the
large noises only the lowest two effective masses are shown.
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Figure 20: Effective mass of diagonalized correlator for Set-II at 7" > 0. Orthogonal

matrix at T = 0 are used for diagonalization.

The top figure is the result of the

pseudoscalar meson and the bottom one is that of the vector meson. Because of the
large noises only the lowest two effective masses are shown.
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Figure 23: t dependence of ry. The top figure is for Set-I and the bottom one is for

Set-II.
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6 Conclusion

In this paper I explored the charmonium correlators in the Euclidean temporal direction
at T" > 0 using the quenched lattice QCD simulation. The high resolution in the
temporal direction is achieved by employing the anisotropic lattice. I examined the
thermal effect on the correlators based on the following two quantities: the correlators
between the optimized operators tuned at T' = 0, and the t-dependence of gg wave
function.

In the calculation of the wave function in the Coulomb gauge, I found the strong
spatial correlation even above T, up to at least 1.57,.. These results indicate the quark
and the anti-quark tend to be close each other even in the deconfinement phase. The
similar result is reported in the light quark mass region in the Ref. [29]. In the case of
charm quark mass these results suggest that the J/1 may not easily be resolved until
~ 1.5T,.. On the other hand, T also observed significant change of the nature of the
correlators between the operators optimized at 7" = 0. This was signaled by the drastic
change of the behavior of effective mass. This situation is interesting, and at the same
time puzzling. It is possible to consider several pictures which are able to explain our
results. For example, the mesonic spectral function still have some peaks above T, and
its width are broadened with thermal effects. Such a situation naturally explains the
observed results in this work. The existence of hadronic modes just above T, were also
suggested by the previous works[26]. From the analysis of temporal meson correlators at
T > 0, the QCD vacuum still has non-perturbative nature above the phase transition,
and far from the perturbative plasma state of quark and gluon. In spite of several
systematic uncertainties our results in the present work have important and interesting
implications on the fate of hadronic states above the critical temperature.

Our approach is directly applicable to the dynamical configuration. If the full QCD
simulation on the anisotropic lattice is appropriately implemented. Then it is interesting
to investigate what effect our results receive from the dynamical quarks. To achieve
the high resolution in the temporal direction, I adopted the anisotropic lattice and
employed the O(a) improved Wilson quark action on it. These implementation also
useful to study the heavy particle such as the glueballs[47] and scalar mesons. For the
correlators of these states I are inevitably forced to extract the signals at the short
time separation. The large temporal lattice cutoff enables us to simulate the heavy
particles on lattices of moderate size with keeping the finite lattice cutoff effect small.
The detailed information in the temporal direction is also significantly useful for the
direct extraction of the spectral function from the lattice data. This approach may give

us the further information on the spectral structure of mesons at 7" > 0.
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