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Abstract

A formulation to obtain the response of hadron masses to the chemical potential is
developed on the lattice. As a first trial, screening masses of pseudoscalar and vector
mesons and their responses are evaluated. We present results on a 16 x 82 x 4 lattice
with Ny = 2 staggered fermions below and above T.. The responses to both the isoscalar
and isovector chemical potentials are sizable and they show different behaviors in low and
high temperature phases, which may be a consequence of chiral symmetry restoration.
We also measure the response of chiral condensate to chemical potential. The first and
second responses of chiral condensate are evaluated. In both low and high temperature
phase, the second responses are negative. They show that the transition point between
chiral symmetry broken and chiral symmetry restoration phases decreases when chemical

potential increases.
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Chapter 1

Introduction

It is well established that Quantum Chromodynamics ( QCD ) is an underlying theory
of strong interaction. This theory is formulated in terms of quarks and gluons which
we believe are the basic degrees of freedom that make up hadronic matter. QCD has
been very successful in predicting phenomena involving large momentum transfer. In this
regime the coupling constant is small and perturbation theory becomes a reliable tool. On
the other hand, at the scale of the hadronic world, the coupling constant is of order unity
and perturbative methods fail. In this domain lattice QCD provides a non-perturbative
tool for calculating the hadronic spectrum and the matrix elements of any operator within

these hadronic states from first principles.

Good knowledge of QCD in the regime of finite temperature and baryon density is
crucial for understanding a wide range of physical phenomena. In cosmology, one faces the
problem of understanding how the universe has evolved through the QCD phase transition
at temperature T ~ 170 MeV. Due to the smallness of the baryon asymmetry, finite
temperature QCD should be sufficient to deal with this problem. On the other hand,
neutron stars require the knowledge of matter in the dense regime, i.e., at large baryon

1

density and very low temperature'. Much less is known about the regime compared to

that of high temperature baryon antibaryon symmetric QCD.

The numerical analysis of regularized filed theories can provide quantitative results on

fundamental non-perturbative properties of QCD. It has been realized that this approach

'In this limit, quark matter is expected to behave as a color superconductor [1, 2].
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will also allow to study the QCD phase transition and the equation of state of the quark-
gluon plasma ( QGP ), and can also be used to address issues like the mechanism for
confinement and chiral symmetry breaking, the role of topology, and the equilibrium
properties of QCD at finite temperature 2. Lattice QCD is QCD formulated on a discrete
Euclidean space time grid. Since no new parameters or field variables are introduced in this
discretization, lattice QCD retains the fundamental character of QCD. Input parameters
in lattice simulations are coupling constant and the bare masses of quarks. Our belief is
that these parameters are prescribed by some yet more fundamental underlying theory.
However within the context of the standard model they have to be fixed in terms of an
equal number of experimental quantities. This is what is done in lattice QCD. Therefore,
if QCD is the correct theory of strong interactions, all predictions of lattice QCD have to
match experimental data. A very useful feature of lattice QCD is that one can dial the
input parameters. Therefore, in addition to testing QCD we can make detailed predictions

of the dependence of quantities on coupling constants and the quark masses.

During the last two decades a lot of calculations about the phase structure of QCD at
finite temperature have been carried out. In fact, we do understand quite well thermo-
dynamics in the heavy quark mass limit of QCD, the pure SU(3) gauge theory, and even
have calculated the critical temperature. Studies of such finite temperature transitions in
QCD have made substantial progress, especially with the recent development of numerical

algorithms for dynamical quarks in the simulation.

Most of the underlying physics of the QGP can be studied theoretically and compu-
tationally by lattice QCD. It has been quite successful in describing the physics at finite
temperature with zero density. However, it is well known that studying finite density
QCD through lattice simulations is a very hard problem. The fermionic determinant at
finite chemical potential is complex, and gives an oscillating behavior in quantum aver-
ages which makes simulations very inefficient ( see Appendix A.1 ). One can avoid this
difficulty by considering SU(2) lattice QCD [5] which keeps action real even with chemical

potential 3. On the other hand, since the naive quenched approximation at finite chemical

2The breakthrough came with the lattice formulations of QCD by K. G. Wilson in 1974 [3]. The first
numerical results on SU(2) pure gauge theory were presented by M. Creutz in 1980 [4].

3Note that the first lattice results in SU(2) QCD with finite chemical potential were reported by A. Naka-
mura almost two decades ago [6].
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potential leads to an essentially different world [7], the use of dynamical fermions would
be essential to extract the relevant physics. In spite of these difficulties, the study of
hadrons in a finite baryonic environment is quite important [8, 9, 10], in view of recent
experimental developments and of the theoretical interest in the phase structure of QCD.
Search for the quark gluon plasma phase in high energy heavy ion collision experiments
requires theoretical understanding of hadronic properties at finite temperature and density
[11, 12]. Moreover, some experimental results can be interpreted by assuming a shift in
the mass and the width of the p meson, induced by the dense nuclear medium even below

the deconfinement transition [13, 14, 15].

range of our work

QGP phase

hadron phase

”‘C X

Figure 1.1: A schematic representation of a possible QCD phase diagram. At high tem-
perature and density, matter is believed to be in QGP phase. The hadronic phase lies in
the low temperature and density. At very high density but low temperature, when nuclei
melt into each other, it has been suggested that a color superconductive phase might set
in. 2CSC denotes a 2 flavor color superconductive regime. 3C'SC' is the 3 flavor regime.
Our work range is around critical temperature at zero chemical potential.

In this study, we propose a new technique to investigate non-zero chemical potential
using lattice QCD simulations. There are several approaches to circumvent the difficulty
of studying a finite chemical potential system, and they seem successful to a limited extent
[16, 17, 18, 19, 20]. In particular, the study of baryon number susceptibility at zero baryon
density has reported an abrupt jump at the transition temperature [21, 22, 23]. There is
in fact much interesting physical information which can be extracted from the behavior of

a system at small chemical potential.
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Our strategy is to expand the hadronic quantities, such as masses and chiral conden-
sate, in the vicinity of zero chemical potential at finite temperature, and explore their
changes through the response to the chemical potential at ;. = 0. An operator, ¥, can be
expanded in non-singular regions as

0

1 ., 0%
19|#:19\u:o+u% 2 —

* bla op?

+0 ], (1.0.1)
pn=0

u=0
The first and the second derivatives of interesting observables with respect to chemical
potential allows to perform the numerical simulations with standard methods 4. The
Taylor expansion in g has also been used, and its properties discussed, in [20]. There,
the behavior of observables, measured by standard methods as a function of an imaginary
chemical potential u, is fitted by a Taylor series amenable to analytic continuation to
real p ( assuming a large enough analyticity domain ). Here we measure the Taylor
coefficients directly, in a single simulation, at u = 0, by calculating the derivatives of the
relevant observables. Although the Taylor expansion cannot reproduce the non-analyticity
inherent to a phase transition, it may suffice for observing the rounded, analytic behavior
indicative of a phase transition in a finite volume, and for applying finite size scaling to

probe the transition in the infinite volume limit.

We also measure the response of chiral condensate to the chemical potential. Studying
for sufficiently light quark masses ( such as u and d quarks ) on lattice QCD at finite
temperature with zero chemical potential, we can find a first order phase transition between
a low temperature phase in which chiral symmetry is spontaneously broken and a high
temperature phase in which chiral symmetry is restored [21, 22, 23]. Our preliminary
results for response of hadron masses and chiral condensate have been reported in [26, 27,

28, 29, 30, 31].

The organization of this paper is as follows. In Chapter 2, we develop basic formulas
to evaluate the first and second responses of hadron masses ( Chapter 2.1 ) with respect
to both isoscalar ( Chapter 2.2 ) and isovector ( Chapter 2.3 ) chemical potentials. In

Chapter 2.4, we focus on the responses for Ny = 2 staggered fermion.

We study the responses of chiral condensate in Chapter 3. We also consider the

isoscalar channel ( Chapter 3.2 ) and isovector channel ( Chapter 3.3 ) for the responses.

“for instance hybrid molecular dynamics algorithms [24], or hybrid Monte Carlo algorithms [25].
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In Chapter 4, we present our numerical results. We explain details of responses for the
pseudoscalar meson in the isoscalar channel ( Chapter 4.2 ) and the isovector channel (
Chapter 4.3 ). Study for vector meson is rather difficult. We show our preliminary results
for the vector meson with the isoscalar and isovector chemical potentials in Chapter 4.4.
The numerical results for chiral condensate will be discussed in Chapter 4.5. Numerical
results are performed on a lattice of size 16 x 8 x 8 x 4 with standard Wilson gauge action

and with two dynamical flavors of staggered quarks.



Chapter 2

Chemical potential responses for
hadron masses

As we know the simulation of finite density system is difficult by lattice QCD approach.
We turn to examine the response to the chemical potential for the hadronic mass and
couplings in this chapter. Using a Taylor expansion method, at fixed temperature T and

bare quark masses, the screening mass of a hadron is expanded in the form:
M M 3
() 0 [(%) } o (2.0.1)

We can measure the first and the second derivatives of hadronic screening mass by standard

T T T) op T) 2 ou?

(ﬁ) 6M‘M_0+ (ﬁ)QT 0?M

n=0 n=0
simulation methods on lattice simulation. Using Eq. (2.0.1) the behavior of hadron at a

small chemical potential will be obtained.

This Chapter is organized as follows. In section 2.1, we examine the basic formulas
to evaluate the first and second responses of hadronic screening mass with respect to
chemical potential from hadron correlator function. The chemical potential will be chosen
two types, i.e., isoscalar chemical potential ( ug = p, = pg ) and isovector chemical
potential ( py = py = —pg ). We give the details of the formulas for the isoscalar
response in section 2.2, and those for isovector case in section 2.3. In section 2.4, we focus

on the expression of using staggered fermion action.
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2.1 The response of hadron masses to the chemical potential

This section develops the basic framework to observe the response of hadron masses with
respect to the chemical potential. The basic framework is as follows. Suppose that a

hadron correlator is dominated by a single pole!

~

Clz) =S (H(z,y, 2, ) H(0,0,0,0)T) = L (e=Mé | o=M(La=d)) 2.1.1
()= 32wy, 2 HH0.0,0.0) = g (1 e ). ey

where M = aM and % = z 2. L, is the lattice size of x-direction. # is the residue

appeared in the propagator as w, and it is better to consider genuine coupling of the

hadronic pole. In the following, we write A = —-. The value of A depends on the choice

2M

of sources. But its behavior as a function of the chemical potential provides information

on the coupling to medium. We take the first and the second derivatives with respect to

0= ay= ﬁ where p is the chemical potential;

0l 2 98 O (B (5 BY) B o

and

| PC@) ,,0%A
o2 o2

OAOM  O2M L . L L
241 - b~ 2 ) tanhd M (43— == )L ==
o (s S (e ) (o= )} -

. (2)]5)2 [(x_ %)Z%ﬁ I, (:e— %) tanh{M (f‘ %>}]

C(z) and the first and the second derivatives of C(z) are calculated from lattice simula-

Cla)~

(2.1.3)

tions. Then, using the right-hand side of Eqs. (2.1.2) and (2.1.3), the first and the second

responses of the hadron mass and coupling are determined.

Next problem is how to get the derivative of the correlator from lattice simulations.
For this purpose, we go back to the definition of the hadron correlator. In this work, we

treat flavor non-singlet mesons in two flavor QCD. The hadron correlator is given by

(H(n)H(0)") = (G) . (2.1.4)

!Generalization to a multi-pole fit is strait forward.
2The mass parameter M and space-time vector z are according to their “canonical” dimension, a is
lattice spacing taking the dimension of length, M and & are dimensionless quantities.
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where G is the meson propagator part

G =Tt [g (i) o 9 (i) TT] - (2.1.5)

Here g(f1) is the quark propagator at finite chemical potential, and T' is the Dirac matrix
which specifies the spin of the meson. The quark propagator is related to the Dirac

operator D[U; fi] in the background gauge field configuration U as

g9(p) = D(p) ™" (2.1.6)
(O) means
eS¢
(0)= ff[(fg(%()ﬁe_sc : (2.1.7)

where Sg is the gluonic action and A is the fermion determinant,

Ny
A =] det (D () , (2.1.8)
i=1
for two light flavors fermion, i.e., Ny = 2. A can be written as
A = det(D(fiy,))det(D(fiq)) - (2.1.9)

Then, the first and the second derivatives are

) : A A
5 (H(n)H(0)T) = <G + GZ> —{(G) <Z> (2.1.10)

and

88—;<H<n>ﬂ<o>*> _ <é+z@§ +G§> Ly <G+G§> <%>

R

where the dots O and O stand for the first and the second derivatives with respect to i

of an operator O.

At zero chemical potential, we have simpler expressions since

A
<Z>:0 for =0 . (2.1.12)
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Eq. (2.1.12) corresponds to the fact that the average baryon number density is zero at

f = 0. Actually, we see that % =Tr [DD’I} det(D) is anti-hermitian at g = 0:

Tr [DD*} _ [D%%D*l} - _Tv [75DT(DT)*175} — Ty [DD*lr L (2.1.13)

This means that a’d%gm changes sign under the transformation U — UT. Since the mea-

sure and the gluonic action are invariant in this transformation, its expectation value

vanishes[21]. Thus, at zero chemical potential, Egs. (2.1.10) and (2.1.11) turn to

Of

8—;22<H(n)H(O)T> = <G’+2G%+G%><G> <%>

(Hn)H(0)") = <G+G%> : (2.1.14)

2.2 Formulas for the isoscalar response

We investigate derivatives with respect to both isoscalar and isovector types of chemical
potential. The isoscalar chemical potential corresponds to the quark number. In this sec-
tion we study the isoscalar chemical potential ( in the next section we will study behavior

of isovector type ) response by setting
s = fiy = fiqg - (2.2.1)

The first and the second derivatives of correlator with respect [ are given by fermion

operators
aaﬂRe(H(n)H(O)T)zo , (2.2.2)
and
5?2 ..
fy _ Pt
5z Re <H(n)H(0)>_4Re<Tr[(ngDg)mor%gmo%rD (2.2.3)

Fvsgl:o%ﬁ} >
n:0

|
~ 9Re <Tr [(ng> D5 (9Dg )io 75FT] >
+ 8 <ImT&" [<ng>n:0 F'y5gl:075l“q ImTr [Dg}>

+ 2Re { <Tr |900T 75050757 | (T‘" | D] =T [DgDg| + 21 | ] 2) >

— {1 [gmalnglrar"]) (10 [Bg] — v [Dyg] + 210 [Dg] ) |
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2.3 Formulas for the isovector response

In this section, we study the case of isovector chemical potential type. The isovector

chemical potential is defined as
B = = —fla - (2.3.1)

Note that Son and Stephanov proposed a model corresponding to the isovector case as
a good test bed for the chemical potential problem [32]. We can find the first and the

second responses for isovector chemical potential as

0 .
fy_ _ t ot
8ﬂRe(I-I(n)H(O) ) 2ReTr Kng)n:O I'v59,.0750 } , (2.3.2)
and
0? o 4 Y .
6—ﬂzRe<H(n)H(O)T> = 4Re (ngDg)mO Tsgt 75Tt D (2.3.3)

(gbg) F%gi:o%lﬂ >
n:0

L+ 2Re <Tr [(gbg)mo s (QDQ)LO%FT} >

+ 2Re{ Tr [gn:oF%sgL:o%Fq (TT [Dg} - [DngD>

- <Tr [gn:OF'Y5gIL;0'Y5FT}> <Tr [139] — TT[DQDQ} >}
2.4 The response formulas for using N = 2 staggered fermion

Our simulations with NV = 2 dynamical quarks are performed by using staggered fermion.

The fermion operator and its derivatives are

1
D(U ﬂ)n,m = ma677,,m + 5 Z 770(”) [U&(n)én—l—&,m - Ug(n - &)5n—&,m
o=x,Y,2
1 - N
+ 57715(”) [Uf(n)e“éwﬂm — Ug(n —t)e “5n_g’m} , (2.4.1)
oD 1 ) o
o = 57775(”) [Uf(n)euénﬂ?,m + Ug (n—te Ménﬂ?,m} ) (2.4.2)
and
0°D 1 . o
BE = 57715(7%) [Ug(n)e“émg,m — Ug(n —te uén—f,m:| ; (2.4.3)



CHAPTER 2. CHEMICAL POTENTIAL RESPONSES FOR HADRON MASSES 11

where ¢ and ¢ are unit vectors pointing along the space and time directions.

We take into account the four fold degeneracy of the staggered fermion operator. Meson

operator is
G =Tt |g(fis)g"(~fis) - & (2.4.4)
for isoscalar chemical potential, where o means

o =1 for pseudoscalar meson  (2.4.5)

o = ()4 (=)™ + (=1)" for vector meson . (2.4.6)

For the isovector chemical potential

G =T [g(n)g'(—) - o (2.4.7)

The determinant factor A of Ny = 2 fermions is
1 R 1 .
A = exp [ZTrlnD(U, fu) + ZTrlnD(U, ,ud)} . (2.4.8)

Further details of the first and the second derivatives of the hadron correlator with respect
to 1 will be given by fermion operators in Appendix. For the isoscalar (isovector ) potential
response, we will give concrete formulae in Appendix B.1 ( C.1 ). In Appendix D.1 we

show them explicitly for the staggered fermion action.



Chapter 3

The response of chiral condensate

For the response of chiral order parameter (¢1)) with respect to the chemical potential
at finite temperature, we use a similar method in Chapter 2, Using a Taylor expansion

method, at fixed temperature T' and bare quark masses, we can expand (i) as:

W)W | _ @Y N (g) 1 9)
T3 u T3 4=0 T)T? 0u 4=0
a2 18R () Y3
+ (5) 5 o | O (£)] - (3.0.1)
The 8(%#) . and %’ . can be obtained by numerical simulation. Using Eq. (3.0.1),
M= n=

we can investigate the behavior of (1) at a small chemical potential. It presents a
new point of view for studying the transition between chiral symmetry broken phase and

restored phase in finite fermion number density.

In this chapter, we discuss it in details. In section 3.1, we write down the the first
and the section responses for (1¢)). The formulas for isoscalar and isovector response are
described in section 3.2 and section 3.3. Using two light flavors of staggered fermion, the

response of (1¢)) are appeared in Appendix D.1.2.

12
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3.1 The chiral condensate response in lattice QCD

We go back to definition of the meson propagator. We treat flavor non-singlet mesons in

two flavor QCD. In lattice QCD, chiral condensate can be written as

(Y1) = Re(G) . (3.1.1)

For an expectation value of the observable G, the first and second responses to the

chemical potential fi at o = 0 are given by

9 . A
8;2<G> = <G+ GZ> (3.1.2)
02 » A A
8—[LQ<G> = <G+ 2GZ> +<GOZ>CC , (3.1.3)
where
(Ao B).. = (AB) — (A)(B) , (3.1.4)

and A is given in Eq. (2.1.9). G is a trace of fermion propagator, and it is different for

isoscalar and isovector chemical potential. !

3.2 Formulas for the isoscalar response

For response of the isoscalar chemical potential, we consider a trace of fermion propagator

using Eq. (2.2.1),

¢ = 5 {Trlgl)] + Tlg(a)]} = Trlg(s)] (321)

At s = 0 the first and the second derivative are

G = —Tr [gbg} (3.2.2)

G = —Tr [gl")g} + 2Tr [ngDg} . (3.2.3)

!See Eq. (3.2.1) for isoscalar potential and Eq. (3.3.1) for isovector potential
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Combining Eq. (3.1.2), Eq. (3.1.3), Eq. (B.1.9), Eq. (3.2.2) and Eq. (3.2.3) we have

0
5aRe(G) =0 (3.24)
and
;—;RdG) = 2Re <Tr [ngDg)} > — Re <T1"[9D9]> (3.2.5)

+ 4 <ImTr [9Dg] 1T [ D] >

+ <ReTr ] 0 <2ReT&r | Dg| — 2rer [ DgDg)| — 4 {1mTx [ Dyg| }2>>

cc

3.3 Formulas for the isovector response

Since the isovector chemical potential is defined by Eq. (2.3.1), the trace of fermion prop-

agator is

G = ¢ {Trlg(n)] + T [o(ua)]} = £ {Telg ()] + Trlg ()]} (3:3.1)

Similarly, derivatives of G are calculated as

G =0 (3.3.2)

G = —Tr [gl")g}%—ZTr [gbgbg} . (3.3.3)

Combining Eq. (3.1.2), Eq. (3.1.3), Eq. (C.1.1), Eq. (C.1.2) Eq. (3.3.2) and Eq. (3.3.3) we

have
0
aﬂRe(G) =0 (3.3.4)
and
i) = e atata] (o] a1

+ <ReTr [g] o {2ReTr [Dg} — 9ReTr [Dng} }>
cc

In Appendix B.1.2, C.1.2, and D.1.2, we also discuss responses of chiral condensate to

the chemical potential using two light flavors of staggered fermion. We give formulas in

Eq. (D.1.5) and Eq. (D.1.6) for the isoscalar chemical potential and the isovector chemical

potential, respectively.



Chapter 4

Numerical results

4.1 Simulation parameters

ma 08 #conf. T/Tc
0.0125 5.26 1200 0.985
5.34 600 1.098

0.0170 5.26 1200 0.977
5.34 600 1.089

0.0250 5.20 1200 0.888
5.26 1200 0.963

5.28 600 0.990

5.29 600 1.003

5.30 300 1.017

5.32 600 1.045

5.34 600 1.074

5.36 300 1.104

5.40 300 1.165

Table 4.1: Parameters of the simulations. #con f. stands for the number of configurations
analyzed.

In this study, simulations are done on a 16 x 82 x 4 lattice. We take an interest in
responses of hadrons below and above the confinement/deconfinement phase transition
temperature. For two light flavors of staggered fermion, the critical coupling 3. is carried
out at Ny = 4, ie., f. = 5.271 for ma = 0.0125, and G, = 5.288 for ma = 0.025
[33, 34]. Our simulations are carried out with the R-algorithm. The time step of molecular

dynamics is taken as § = 0.01. To evaluate the trace, ‘Tr’, the Z9 noise method [35] is used,

15
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and the number of noise vectors is two hundred ! . Hadronic correlators are measured by
using the corner-type wall source [22] after Coulomb gauge fixing in each x-plane, and we
choose three quark masses, ma = 0.0125, 0.017, 0.025. The Wilson and Polyakov loop
are shown in Fig. 4.1, and the chiral condensate for ma = 0.025 is shown in Fig. 4.2.

The number of configurations used for calculations of the correlators is summarized in

Table 4.1.
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Figure 4.1: Average value of Wilson line (left figure) and Polyakov line (right figure) as a

function of .

The expressions of responses, Eqgs. (2.3.2), (D.1.3), and (D.1.4) in Appendix, consist of
many terms. We show typical features of the terms. As seen in Fig. 4.7, the pseudoscalar
correlator is measured with very small error bars. Fitting by the single pole is very

successful for an interval 1 < z/a < 15.

Yozt
(B) : 4 Z Re <Tr [(ngDg)n.O gIL:O} >
Y,2,t ’
(D) : 23 Re <Tr [(ng>n.0 gg;:o} > (4.1.1)
Y,2,t ’

are also presented in Fig. 4.4 ~ Fig. 4.7. The figure shows that all the quantities are

measurable with acceptable errors. We find that B and D term depend on coupling 3,

We study the relation between necessary terms and noise vectors in Appendix E.
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Figure 4.2: Average value of chiral condensate as a function of 3.
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Fig. 4.8 ~ Fig. 4.11 show C 1d?C/dj? at 8 = 5.26 (below 3.) and 5.34 (above 3.) for

the isoscalar and isovector chemical potentials. The solid curves are fittings by Eq. (2.1.3)

and they describe the data reasonably well.

Let us turn to the first order response to the isovector chemical potential. Note that

the first order response is identically zero. Fig. 4.12 ~ Fig. 4.14 shows C ~'dC/duy at

[ = 5.26 and 5.34. Both data do not indicate sizable values for the first order response.

4.2 Responses of the pseudoscalar meson to the isoscalar
chemical potential

We determine the response of a meson mass as follows. First we determine the meson
mass M by a usual step. Namely, we fit the MC results of the correlator to Eq. (2.1.1).

The value of the meson mass M is obtained as a fitting parameter. Then, substituting
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ma 8 M p¥ i T
0.0125 5.26 0.2956(2) ~1.4(20) 0.17(35) -0.8(23)
5.34 0.7513(11) -4.23(49) 5.39(10) 2.95(51)

0.0170 5.26 0.3506(2) “1.5(14) 0.30(26) -0.6(16)
5.34 0.7421(35) -3.68(75) 5.82(16) 4, 16(78)

0.0250 5.20 0.4061(2) -0.4(14) 0.16(26) 0.0(16)
5.26 0.4218(2) -0.8(11) 0.29(20) 0.1(12)
5.28 0.4450(3) -1.8(21) 1.36(39) 1.18(23)
5.29 0.4861(3) -8.6(8) 3.37(16) -1.64(92)

5.30 0.5956(8) -5.8(10) 4.03(21) 0.9(10)
5.32 0.6926(11) -4.65(91) 5.17(20) 2.82(96)
5.34 0.7534(7) -3.17(41) 4.43(8) 2.71(42)
5.36 0.7956(7) -3.01(48) 4.89(1) 3.14(49)
5.40 0.8600(6) -1.83(38) 5.04(8) 4.02(38)

Table 4.2: Responses of the pseudoscalar meson to fig.

M to Eqgs. (2.1.2) and (2.1.3), we fit the MC results of the first and second responses to
these equations and obtain the responses as fitting parameters. Note that for i g response
we omit the fitting step to the first order response since it vanishes ( see Eq. (2.2.2) in
Appendix ). Results of the pseudoscalar meson for the isoscalar chemical potential are
summarized in Table 4.2. The screening mass of the pseudoscalar meson at ma = 0.025

as a function of T'/T. is shown in Fig. 4.16 .

In low temperature phase, the response of the mass is small. This behavior of the
mass can be considered as the persistence of nature of Nambu-Goldstone boson. In fact, if
the chiral extrapolation is made, the limiting value of the isoscalar response is consistent
with zero as shown in Fig. 4.17. In addition, our results suggest that the response of the

coupling is small below T..

Above T, we first note that the correlator and its response are still well fitted by single
pole formulae, Egs. (2.1.1-2.1.3). Screening masses are manifestly larger than those below
T.. This confirms the results of the previous work [23]. The pseudoscalar meson seems
to be free from the nature of Nambu-Goldstone boson. The response of the mass above
T. becomes large. In the sense of the screening length, chemical potential effect enhances
a shielding of the pseudoscalar charge. We also note that the response of the coupling

increases.
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ma 3 1dA dM 1 d2A d2 M 1d%y
Adj dfi A dp? dp? 7y dj?
0.0125 | 5.26 | 0.0029(57) |-0.0001(12) |47.46(71) |-12.93(43) | 3.7(16)
5.34 | 0.0047(93) | 0.0006(21) | 2.32(64) | -1.32(32) |0.56(77)
0.0170 | 5.26 | -0.0081(48) | -0.0005(10) |33.52(61) [-10.49(33) | 3.6(11)
5.34 | 0.0000(82) |-0.0012(19) | 2.74(64) | -1.48(32) |0.75(78)
0.0250 | 5.20 | 0.0062(39) 0.0016(8) |25.24(46) | -9.10(23) |2.84(74)
5.26 | -0.0080(37) | 0.0007(8) |23.22(46) | -8.64(23) |2.72(71)
5.28 | 0.0047(55) | 0.0010(12) |19.58(91) | -7.65(45) 2.4(14)
5.29 | 0.0012(31) 0.0003(6) | 12.43(70) | -5.48(35) 1.2(10)
5.30 | -0.013(7) |-0.0004(14) | 6.99(99) | -3.74(50) | 0.7(13)
5.32 | -0.0054(64) |-0.0020(14) | 4.04(75) | -2.14(38) |0.95(93)
5.34 0.000(6) 0.000(1) 2.99(53) | -1.51(26) [0.99(60)
5.36 | 0.0031(55) | 0.0038(13) | 2.22(46) | -1.06(22) |0.89(54)
5.40 | 0.0057(50) |-0.0010(12) | 1.72(41) | -0.56(19) |1.08(47)

Table 4.3: Responses of the pseudoscalar meson to fiy .

4.3 Responses of the pseudoscalar meson to the isovector
chemical potential

Results for the isovector chemical potential are summarized in Table 4.3. In the presence of
the isovector chemical potential, 77 and 7~ may have different masses. Here we consider
the 7+ (ud ) meson as shown in Eq. (2.1.5). In contrast to the case of the isoscalar
chemical potential, the second order response of the mass is significantly large in the
low temperature phase, and decreases in magnitude above T.. The difference between
the isoscalar and isovector chemical potentials is illustrated in right figure of Fig. 4.16.
The response of 4 also shows different behaviors in the confined and deconfined phases,

illustrated in Fig. 4.18.

These features are manifest even for a small quark mass parameter. Note that the
isovector potential explicitly breaks the u-d symmetry, even if the two quarks have equal
masses. The phase structure in the ( 7', |uy| ) plane has been studied by Son and Stephanov
[32]. The original SU(2) 4z symmetry at non-zero quark mass and zero chemical poten-
tial is broken down to U(1)r+r. At zero T and for |uy| larger than the mass of the
pseudoscalar, the system is in a different phase than at uy = 0. The ground state is

a pion condensate and there is one massless Goldstone boson associated with the spon-

taneous breaking of the U(1)p4p symmetry. For |uy| = mpg, the critical temperature
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is T = 0. At sufficiently high temperature, the condensate melts and the symmetry is
restored. Due to the presence of the phase boundary, we do not expect to be able to reach
the condensed phase by Taylor expanding around py = 0. We can, however, hope to get
some hints about the presence of the phase boundary while keeping |uy| < mpg. In this
case, the system is in the same ground state as for zero chemical potential, there are no

exact Goldstone modes and the three pions are massive.

An interesting point in this respect is that the second derivative of the mass is negative
in the low temperature phase, in marked contrast with what happened for the isoscalar
potential. The mass tends to decrease under the influence of the isovector chemical po-
tential, reflecting the fact that for low temperature and chemical potential above the pion
mass, a Goldstone mode appears [7, 32]. This is more clearly shown by an expansion as

in Eq. (2.0.1). At 8 = 5.26 and ma = 0.017, the data suggest

M(j‘fV) - (1.4024 £ 0.0008) + (—0.0005 = 0.0010) (“%)
— (1.31+0.04) (“%)2 +0 [(“%)3] . (4.3.1)

The coefficient of the linear term is consistent with zero. Notice also in Table III that the
lighter the quark mass, the stronger the response, a possible indication that for lighter

pions the phase boundary is closer to the zero chemical potential axis, as suggested in [32].

In the high temperature phase, the dependence of the masses on uy decreases. Since
the pseudoscalar meson becomes heavier, the phase boundary to the pion condensate phase
is farther away from the py = 0 axis. The weaker responses may be understood from this

point of view.

4.4 Results for the vector meson

As for the vector meson, correlators are calculable at § = 5.26 and 8 = 5.34 for ma =
0.0250. But the signal noise ratio is very bad. At present, the screening mass and the
responses are extracted from a limited range of the data. In Table 4.4, we summarize
screening masses of the vector meson. We find the error bars are larger than these for

pseudoscalar meson masses and the masses are slightly changed between low temperature
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ma \ (3 5.26 5.34
0.0125 1.287(54) 1.295(20)
0.0170 1.287(54) 1.312(17)

ma \ f| 520 | 526 | 5.28 | 5.29 |5.30 | 5.32 | 5.34 | 5.36 | 5.40
0.0250 | 1.450 | 1.320 | 1.365 | 1.383 | 1.51 [ 1.299 |1.352 |1.311 |1.387
(56) | (29) | (34) | (28) | (36) | (13) | (52) | (27) | (27)

Table 4.4: Preliminary results for vector meson masses.

and high temperature. The first order response to the isovector chemical potential is again

small and consistent with zero ( see Fig. 4.19 ).

Fig. 4.20 shows the vector meson correlator and the second order responses of the
correlator to the isoscalar and isovector chemical potentials for ma = 0.025 and g = 5.26.
As for the second order response, a positive response to the isoscalar chemical potential
is indicated in low temperature, whereas it is negative to the isovector potential. In
comparison with the responses of the pseudoscalar meson, for example d2M / d,&%, , the

responses are weak.

Let us turn to the data in high temperature phase. In Fig. 4.21, we plot the vector
meson correlator at § = 5.34, ma = 0.025, and the free quark correlator at ma = 0.025.
Their responses are shown in Fig. 4.22. The correlator and its response show very different
shapes from those of the pseudoscalar meson. Apparently, formulas based on the single
meson pole dominance, Eq. (2.1.1) Eq. (2.1.3) give very poor description to the data.
Rather, a mesonic correlator composed of free quarks gives similar shapes for the correlator
and responses as shown in Fig. 4.21 and Fig. 4.22. Thus, in contrast to the pseudoscalar
meson, the data suggest deconfining of hadronic cluster in the vector channel. High

statistical simulations shall be required to clarify the behavior.

4.5 Numerical results for responses of condensate

From Eq. (3.2.4) and Eq. (3.3.4), the first order response of (1) to the isoscalar and
isovector chemical potentials in lattice QCD are zero. To investigate the behavior of

a system at small chemical potential, we must explore the second response of (1) to
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5.20 5.26 5.28 5.29 5.30 5.32 5.34 5.36 5.40

(D) | 0.4576 | 0.3931 | 0.3423 | 0.2682 |0.1758 |0.1325 |0.1126 |0.1013 [0.0875
(3) (5) (1) (2) (2) (8) (5) (6) (4)

52&2@” 03 | -1.1 | -39 | -125 | -41 | -1.90 | -1.03 | -0.85 | -0.56
° (20) (19) (29) (20) (15) (55) (31) (37) (26)

% 038 | -1.09 | -37 | -11.3 | 38 | -1.73 | -1.01 | -0.83 | -0.56
Ly,
(70) (83) (15) (15) (11) (38) (23) (28) (21)

Table 4.5: (), 83}%@ and 62%> for ma = 0.025.

the isoscalar and isovector chemical potentials. We summarize our simulation results for
responses of chiral condensate in Table 4.5. In Fig. 4.23, we plot the responses of (1)) to
the isoscalar and isovector chemical potentials as a function of % In the chiral broken
symmetry phase, the second order response of (1)) is negative and small. In this case
(Ynp) decreases as p is increased. In the chiral symmetry restoration phase, the second
order response of (1)) are also negative. The behavior of (1)) decreases faster than that
in the chiral broken symmetry phase. In addition, in chiral symmetry restoration phases
(1)) is zero in the continuum limit, and the responses of (1)) are zero. Our simulation
results are not in contradiction with those in the continuum limit. This is more clearly

shown by expansion as in Eq. (3.0.1).

Near B¢, for instance, § = 5.29,

% — (1716 £ 0.11) — (25.0 + 4.1) (“75)2+0 [(%Sﬂ
B Hs
W/’%# = (17.16 £ 0.11) — (22.6 £ 3.0) (“%)2 +0 [(“%)3} - (451

there are large responses. The contribution of chemical potential makes B¢ to drop off

from p = 0.
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In the chiral symmetry restoration phases,

%M —  (6.486 £ 0.039) — (1.70 = 0.75) (’%)ﬁo[("%f
W %g )MV = (6.486 % 0.039) — (1.65 % 0.56) (%)QJFO[(“?V)S], (4.5.2)

at § = 5.36, and

() (ps)
T3

= (5.598 +0.025) — (1.12+ 0.53) (lé,?) +0 [(%)3]

Hs

(P9) (ny)
T3

2 3
) = (5.598 £0.025) — (1.12 0.43) (“—V> +0 (“—V> , (4.5.3)
T T T
By
at 0 = 5.40. We find the response for the isoscalar chemical potential is similar to that

for the isovector channel.

Using Eq. (3.0.1), we also plot our results for the small finite chemical potential. In
the Fig. 4.24, we include (17) for i = 0.10 and g = 0.15. We find the critical tempera-
ture tends to decrease under the influence of fisy . Thus, in the low temperature phase,
turning on the chemical potential brings the system closer to the phase transition where
chiral symmetry is restored, and decreases the chiral condensate. At high temperature,
because chiral symmetry is restored, responses of the chiral condensate to the isoscalar

and isovector chemical potential are small.
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Figure 4.3: Correlator and some quantities of the pseudoscalar meson at § = 5.26 (left
figure), 5.34 (right figure) and ma = 0.0125. The curve is fitted by the single pole formula
(2.1.1).
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Figure 4.4: Correlator and some quantities of the pseudoscalar meson at § = 5.26 (left
figure), 5.34 (right figure) and ma = 0.0125. The curve is fitted by the single pole formula
(2.1.1).
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Figure 4.5: Correlator and some quantities of the pseudoscalar meson at § = 5.26 (left
figure), 5.34 (right figure) and ma = 0.0170. The curve is fitted by the single pole formula

(2.1.1).
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Figure 4.6: Correlator and some quantities of the pseudoscalar meson at § = 5.20 (left
figure), 5.26 (right figure) and ma = 0.0250. The curve is fitted by the single pole formula

(2.1.1).
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Figure 4.7: Correlator and some quantities of the pseudoscalar meson at § = 5.32 (left

figure), 5.34 (right figure) and ma = 0.0250. The curve is fitted by the single pole formula
(2.1.1).
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Figure 4.8: The second order response of the pseudoscalar meson correlator at § = 5.26
(left figure), and the same quark mass parameter ma = 0.0125 but 5 = 5.34 (right figure).
The curves are fittings by the formula (2.1.3).
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Figure 4.9: The second order response of the pseudoscalar meson correlator at § = 5.26
(left figure), and the same quark mass parameter ma = 0.0170 but 5 = 5.34 (right figure).

The curves are fittings by the formula (2.1.3).
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Figure 4.10: The second order response of the pseudoscalar meson correlator at § = 5.20

(left figure), and the same quark mass parameter ma = 0.0250 but 5 = 5.26 (right figure).
The curves are fittings by the formula (2.1.3).
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Figure 4.11: The second order response of the pseudoscalar meson correlator at § = 5.32
(left figure), and the same quark mass parameter ma = 0.0250 but 5 = 5.34 (right figure).

The curves are fittings by the formula (2.1.3).
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Figure 4.12: The first order response of the pseudoscalar meson correlator at § = 5.26
(left figure) and 8 = 5.34 (right figure). Quark mass parameter is ma = 0.0125. Line are

fittings by the formula (2.1.2).
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Figure 4.13: The first order response of the pseudoscalar meson correlator at § = 5.26
(left figure) and 8 = 5.34 (right figure). Quark mass parameter is ma = 0.0170. Line are
fittings by the formula (2.1.2).
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Figure 4.14: The first order response of the pseudoscalar meson correlator at § = 5.20
(left figure) and 8 = 5.26 (right figure). Quark mass parameter is ma = 0.0250. Line are
fittings by the formula (2.1.2).
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Figure 4.15: The first order response of the pseudoscalar meson correlator at § = 5.32
(left figure) and 8 = 5.34 (right figure). Quark mass parameter is ma = 0.0250. Line are
fittings by the formula (2.1.2).
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Figure 4.19: The first response of vector meson correlator at 5 = 5.26 (left figure) and

B = 5.34(right figure) for ma = 0.025.
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Figure 4.20: Vector meson correlator at 5 = 5.26 and ma = 0.025 (left figure), and the

second order response of the correlator (right figure).
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Figure 4.21: Vector meson correlator at 8 = 5.34 and ma = 0.025 (left figure), and free
quark correlator (right figure) at ma = 0.025.
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Figure 4.22: The second order response of vector meson at 5 = 5.34 and ma = 0.025 (left

figure), and free quark response (right figure) at ma = 0.025.



CHAPTER 4. NUMERICAL RESULTS

d*<gu>/dpg’

|
(8]
T

|
=N
o

ma=0.025

Mg
_15 L L L L L L
085 090 095 100 105 110 115 120
T,
2 /a7, 2 /.7,
Figure 4.23: 9 %W (left figure) and ng/ﬁ
opig opy,
0.6 T T
& —-0 p=0.00
£ — 4 1 =0.10
% & —=U=0.15
0.4 Sse |
RN
A &
A \
7 \
Vi
0.2 A\ ,
\ %\
ity
= S
0.0 L L L L L L
085 090 095 100 105 110 115 1.20
TIT,

34

ma=0.025

\
N1> % %/
kS
AN -5r |
3 L
v b
Ny I
by
|
10 t ¥
Hy
—_ 5 L L L L L L
08 090 09 100 105 110 115
T/TC

(right figure) as a function of %—c at ma = 0.025.

1.20

1.20

06 ‘
& -0 1,20.00
55— p,=0.10
5 &~ 1,20.15
04 r Sss 1
.
A \
>
g 3
®
[a)
02t \@\\ 1
iy
R A
%—:&ﬁ—
00 Il Il Il Il Il Il
085 090 095 100 105 110 115
TIT,

Figure 4.24: Behavior of (i¢)) at finite isoscalar chemical potential (left figure) and the

isovector chemical potential (right figure).



Conclusions and Perspectives

In this work, we have developed a framework for the second order response to the chemical
potential and shown the first results of the first and second responses of pseudoscalar and
vector meson masses. As shown in the previous sections, the second order responses are
sizable and reveal several characteristic features. For the pseudoscalar meson, the behavior
of the responses seems to have close contact to the chiral restoration. It is notable that the
single hadron pole gives a good description for the response as well as for the correlator
at =534 (T/T. ~ 1.1 ) in the pseudoscalar channel. On the other hand, the vector

meson is not well fitted by the single pole equation and seems to be deconfined there.

Since the present study is the first trial, our simulations have been performed on a
rather small lattice. However, differences Ny = 4 and N; = 6 lattices have been re-
ported [36]. Thus, further investigations on larger lattices are indispensable. A study of
the chemical potential response of the nucleon is also interesting. An exploratory study is

in progress.
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A.1 Non-zero fermion number density

Up to now thermodynamics of hadronic matter was discussed at high temperature and
vanishing net fermion number density ( In the low energy, net baryon number density
is one third of the fermion number density ). At non-vanishing fermion number density,
using the grand canonical partition function Z(T, puq) = Tr{exp [—3(H — pgNg)|}, with
the Hamiltonian H and fermion number operator N,, n, can be calculated from

T O0Inz a=3 OlnZ
n, = — =
N V4 Oltg L3L; Oltg

(A.1.1)
where an isotropic lattice spacing (a) is assumed.

An introduction of the quark chemical potential p, in the QCD lattice action has to
satisfy the trivial requirement that for free quarks ( without color gauge interaction )
the well-known results for the ideal relativistic Fermi gas have to be reproduced in the
continuum limit. The quark matrix D for Wilson quarks with non-zero chemical potential

on an isotropic lattice can be written as [37, 38, 39, 40]

3
Dy =00 — K> [0yara(r +9n)Unn

n=1
+0u (r— 'Vn)U::cr,n
—KF(apq)o, . a(r+74)Usa

~KG(ap1q)5, 44, (r — 1)U} - (A.1.2)

Here F' and G are, for the moment, arbitrary functions of chemical potential in lattice
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units (auq), to be determined later. Similarly, for staggered quarks,
13
Dy’m = améy’m + 5 Z T’my’n‘ |:5y+ﬁ7$UJ,n o 5y7$+ﬁUff1n
n=1

1
+§n$,4[G(ayq)5y+4’mU;’4 — Fapq)d,, ;i 3Us - (A.1.3)

In order to constrain the functions F'(ap,) and G(ap,), let us consider the free energy

density f [41] in the absence of gauge interaction ( U, = 1)

T L3
f=—=InZ=-T*=L

- 75InZ, (A.1.4)

where T~ = a; L, V = (asLs)?, and a; = as. Performing the Grassmannian path integral,

action can be defined

Sy =Indet(D). (A.1.5)
One obtains
L L} )
[T = —L—glndet(D) = —L—glndet(D). (A.1.6)

Here, in the second step a unitary transformation into momentum space was performed,

which is defined by

-1 ik
Dy = L Y evttirkp, o (A.1.7)

I?y

Using the Wilson quark matrix, Eq. (A.1.6) gives

L} :
Tt = —L—glndetsc {1 - K [Z{%cos(kn) — 2iry,sin(ky,) }
s n=1

+ 2rRcos (k4 +16) — 2iRyssin(ky + iQ)} } , (A.1.8)
where R and 6 are defined by
1 F-G
R = (FG) 2, tanh(&) = m
1 1
R cosh(0) = §(F +G), R sinh(0) = §(F - G). (A.1.9)

Eq. (A.1.8) still contains the vacuum contribution, which can be removed by subtract-

ing fT* at p, = 0. Calculating the determinant in spinor-color indices det 5. gives

[f(T, pg) — f(T,0) T~ =
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3 2
_L:}—L;Lt ; In <1 - 27"K7; cos(ky) — 2r K Reos(k4 + i9)>

3
+AK? ) " sin®(ky) + 4K Rsin® (ky + i0)

n=1
2
4 4
“In | (120K Ccos(ky) | 4K sin®(ky) | o (A.1.10)
p=1 p=1

In the continuum limit a — 0 the momentumis k, = ap,,, and in the limit Ly, L; — oo

the momentum sums become integrals by

1 1 21 1 s
=_ — d*k = d*k
|7 2= Gy | e R

where € is Fourier transformation factor. It turns out that the correct continuum limit is

obtained only if

R=1, 0(apy) = apy + O(apy)?. (A.1.11)

Otherwise, at the critical value of the hopping parameter, the free energy density and

other thermodynamic quantities diverge. This means that the simplest choice [37, 38]

Flapy) = @ — cta (A.1.12)

is essentially unique at least near the continuum limit. In this case Eq. (A.1.10) gives

6 o0 m2 4+ 33 P2+ (pa+ing)?
T, ug) — f(T,0) — ——— d*pl n=1-n ¢ (A1l
f( nuq) f( 70) (271')4 /Oo pin m2 +p2 ( 3)

It can also be shown that in the continuum limit the choice of Eq. (A.1.12) gives the

correct energy and number density of an ideal relativistic Fermi gas [37, 39].

The numerical simulation of QCD at non-zero quark chemical potential p, # 0 is

difficult. For p, = 0 we have

Sq = (UyD[U]yaths) (A.1.14)

‘T7y

and the quark matrix satisfies the relation

Dy =D} 5. (A.1.15)
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where Dl,y denotes the adjoint with respect to the Dirac spinor and color indices. There-

fore the quark determinant is real, because
det D = det D' = (det D )*. (A.1.16)

However, the relation Eq. ( A.1.16 ) does not hold at p, # 0. The quark determinant is

Sefs also

complex, therefore the effective gauge action Scfy and the Boltzmann factor e~
become complex. This means that e™¢ff can not be used for the transition probability in
an updating process. In principle one can define the transition probability by the absolute

value of the quark determinant:

det D = eP|det D| = ¢¥P[det DD' |2. (A.1.17)

S.1[U] = SelU] - %m (det(DD)] = SalU] — %Tr (det(DD)], (A.1.18)

and include its phase in the measurement. For instance, for a pure gluonic quantity A[U],

one can use

<A[U]ei<pD>Seff
—<€i‘pD>Seff . (A.1.19)

(AlU]) =

The problem with this mathematically correct representation is that, in practice, it usually
does not work. Namely, e’?P has a very strong fluctuation on the typical configurations in
an updating process, which is generated by Sefs in Eq. (A.1.18). Such an updating process
produces ‘wrong’ configurations with the wrong values of the measurable quantities. These
contributions have to canceled by a strongly fluctuating phase. Therefore Eq. (A.1.19)

can only be used on small lattices and for small chemical potentials [42].



Appendix B

B.1 Formulas for the isoscalar chemical potential response

The simulation for studying responses of hadrons is carried out at zero chemical potential
with Eq. (2.1.14). In this paper we study two cases of chemical potential, i.e., the isoscalar

and isovector type chemical potentials.

B.1.1 Response for hadron masses

Using Eq. (2.2.1), the quark and meson propagators have the following relations

9(fid)on = 159" (—Ra)n:0Vs (B.1.1)

and with the help of Eq.(B.1.1) G is given by

G = T [g(is)nolr59(~fis) s (B.1.2)

where Tr means the trace over spinor and color indices. Each propagator is expanded as

~n2

9(i) = g—nghg+ % (20D9Dg—gDg) + O(") . (B.1.3)
~2

. R . 'LL . . . "
g(—p) = g+ pgDg+ > <2ngDg - ng) +0(i%)

where g and D are the propagator and the fermion operator at zero chemical potential,

respectively, and a relation
g=—gDyg (B.1.4)
is used.
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The first derivative at 1g = 0 is
G = —2ImTr {(ng) . F'y5gl:0'y5FT ; (B.1.5)
n:
and the second derivative at jis = 0 is obtained as

G = 4ReTr [(ngDg) 0F75g;r120’y5l“q (B.1.6)

. . . T
— 2ReTr [(ng) F75gj1.0’y5l"q — 2Tr [(ng) [y (ng> 'y5FT]
n:0 ’ n:0 n:0

Let us turn to calculate the derivatives of A. Using the following equations ,

a{; (D) = Tr[Dg} detD | (B.L1.7)
a—;det(D) - {ﬂ B2 [Dng}vLTY{Dgr}det(D) ,
we have
= 2Te[Dg] . (B.1.8)

D> > > >

. .. .12
— 2Ty [Dg} — 9Ty {Dng} +4Tr {Dg}
Combining Eqgs.(2.1.14), (B.1.5), (B.1.7), (B.1.8) and (B.1.9), we have

0

5% Re(H(n)H(0)) =0 | (B.1.9)

and

82

o R < ()H(o)T>_4Re< [(ngDg)n:0F75gjuon5[‘T}> (B.1.10)

— 2Re(Tr [(gﬂq)n Drsghostt])

~ 9Re <Tr gDg) T (9D9>n:0 %TT] >

+ <ImTr [(ng)n: F%glzovsﬁ} ImTr [DQD

+ 9Re { <Tr [gnzor%gjuo%ﬁ} (ﬂ [Dg} ~Tr [Dng} +2Tr [ : g} 2) >

(ot 35 ] (0]
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B.1.2 Response for chiral condensate

For response of the isoscalar chemical potential, using Eq. (2.2.1), we consider trace of

fermion propagator
1 . N N
G =5 {Trlg ()] + Trlg (@a)l} = Trg (As)] (B.1.11)
At fis = 0 the first and the second derivative are

— Ty [gbg} (B.1.12)

G = —Tr [ng}nLQTr [ngDg}

Combining Eq.(3.1.2), Eq.(3.1.3), Eq.(B.1.9), Eq.(B.1.12) and Eq.(B.1.13) we have

86;2R6<G> =0 (B.1.13)
and
88—;Re<G> — 9Re <Tr [ngDg)b — Re(Tr [ngD (B.1.14)

+ 4 <ImTr [gbg} ImTr [DgD

+ <ReTr [g] o <2ReTr [Dg} — 9ReTr [ngg} _4 {Im'ﬁ [Dg} }2> >



Appendix C

C.1 Formulas for the isovector chemical potential response

C.1.1 Response for hadron masses

Next, we consider responses to the isovector chemical potential. They are given by using

Eq.(2.3.1). In this case, the first derivative of A vanishes,

A

= Py [det(D(fv))det(D(=av)] =0 =0 , (C.1.1)

and the second derivative is obtained as

% = 2Tr {Dg} — 2Tr [Dng} . (C.1.2)

Similarly, derivatives of G are calculated as

G = —2ReTr Kng)n:O F%gjuofyg,f‘q , (C.1.3)
and

G = 4Reﬂ[<ngDg> 0F75g;ruo'y5FT} (C.1.4)
mn:
.. . . T
— 2ReTr[(ng) F%sglzo%ﬁ} +2Tr[(ng) I'vs (ng) 75FT]
n:0 n:0 n:0

Resultant expressions for the first and second responses to the isovector chemical are

;ﬂRe(H (MH(0)") = —2ReTr [ (9Dg)  Trsghysl!] . (C.15)
and
aa—;Re<H(n)H(0)T> — aRe(Tr[(9DgDg) Trsghast']) (C.1.6)
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— 2Re <Tr [(ng> Tsg! 75FT}>
+ e<Tr [(ng) s ng)nmsFTD
(gt gor] (5] - o)

(s anatan]) (1 o] ]}
C.1.2 Response for chiral condensate

Since isovector chemical potential is definited by Eq. (2.3.1), the trace of fermion propa-

gator is

G = 5 {Trlg(u)) + Telg (Aa)]} = 5 {Trlg(3)] + Telg(~4)]). (C.1.7)

Similarly, derivatives of G are calculated as

G =0 (C.1.8)

G = —-Tr [gl")g} + 2Tr [ngDg} . (C.1.9)

Combining Eq.(3.1.2), Eq.(3.1.3), Eq.(C.1.1), Eq.(C.1.2) Eq.(C.1.8) and Eq.(C.1.9) we

have
0
8_ﬂRe<G> =0 (C.1.10)
and
Zome(@) = 2we (T [sDog]) ke (T [og] ) c.111)

+ <ReTr [g] o <2Re']1" [Dg} — 2ReTr [DngD>CC .



Appendix D

D.1 Responses for staggered fermion

D.1.1 Response for hadron masses

For staggered fermion, the determinant factor A is given by Eq.(2.4.8), and this leads to

- %Tr [Dg} , (D.1.1)
1 .. 1 .. 1 . 12
= ETF [Dg} — ETr [Dng} + ZTr [Dg}

| D ] B

Using Eq.(2.4.4) and Eq.(2.4.7), final expressions for the second responses are

82

opi2

Re

+

+

(H(n)H(0)T) = 4Re< [(ngDg) o g;; 0‘7}> (D.1.2)
o1 (o). o]

e (o), (03], ]

%Re { <Tr [gn:ogizoa] (Tr [Dg} ~Tr [Dng} + %Tr [Dg} 2) >
(1 anosao]) (1 [Bo] 1 [Doig] + 21 [0]"))

for the isoscalar chemical potential, and

o2

Re(H(n)H(0)") = 4Re< [(ngDg) " 9n00}> (D.1.3)

- ne(n (), o]
+ 2Re <T1 [(ng> (ng> o 0']>
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S (e R )y
(e[l (v [00] - 1[o00s])

for the isovector chemical potential.

D.1.2 Response for chiral condensate

We use Eq.(D.1.2) for staggered fermion. Resultant expressions for the second order

response of chiral condensate to chemical potential are

——Re(G) = 2Re <Tr [ngDg}) — Re(Tr [ng}> (D.1.4)
+ <ImTr [gbg} ImTr [Dg}>
+ <ReTr [g] o % (ReTr [Dg} ~ ReTr [Dng)} - {ImTr [Dg} }2>>

for isoscalar chemical potential, and

82
Ofi2

Re(G) = 2Re <Tr [ngDgD —Re <Tr [gl")g}> (D.1.5)

+ <ReTr lg] 0 % (ReTr [Dg| — ReTr [DQDQD>

cc

for isovector chemical potential.



Appendix E

To evaluate the traces in this study, we use a stochastic estimation with the Gaussian
noise [43, 44]. Here, we employ the Z9 noise method [35]. For example, Tr [Dg} is written

as

Nnoise

Tr|Dg| = 57— > Bl@)D(r.n)oly. 2)Ri(2) (E.0.1)

with the randomly generated noise vector R(x); € {1,—1}. In this representation, gR is
obtained by solving a linear equation Dx = R for x with a source vector R. Multiplying
D and contraction with R are easy, and finally statistical average over R; eliminates the
off diagonal contributions of Dg so as to evaluate the trace. The number of sample noise
vectors, Nyoise i chosen so that the statistical error concerning this trace operation must

be sufficiently reduced. In this study we choose N,,pise = 200.

In the Fig. E.1,we plot (1)) which measures (Y1) as a function of noise vectors for
ma = 0.025, 8 = 5.29. We measure noise vectors from 10 to 200, and configurations
from 100 to 600. We find (1)7) depends on numbers of configuration, but it does not
strongly depend on the number of noise vectors when the noise vectors are larger than
10. For studying the behavior of (1¢), we can choose the noise vectors as 10. However,
in this study, we must also measure the other quantities, for example, Tr [Dg}, Tr [Dg},
Tr [ng} , Tr [ngDg} and Tr [Dng}, to find the relation with noise vectors. In Fig E.2
- Fig. E.6, we plot them. We find. for example, Im (Tr {ngD (Fig. E.6) is stable when
the number of noise vectors is larger than 100, and that of configurations are 600. We

think 200 noise vectors are enough for this study.
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Figure E.6: Im (Tr {ngD as a function of noise vecotrs ( irm ). Confs denotes number
of configurations. ma = 0.025, § = 5.29.
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