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Abstract
ALICE experiment studies strongly interacting matters in the LHC

energy by analyzing unique physics in heavy ion collisions. The large
amount of data (1TB/s) that will be collected tomeasure the rare physics
events in ALICE Upgrade project makes record every collision nearly im-
possible. To address this issue,O2（Online-Offline）project was planned
to build a new event collecting and processing infrastructure.

Though it is expected to reduce the amount of data to be transferred
and recorded by selectively recording only the physical events excluding
the background by reconstruction of particle tracks. The conventional
data collection program has a issue of speed to calculate the magnetic
field applied to the particles inside the magnet.

In this thesis, we proposed a faster implementation for the space
solenoid electromagnet applied, and for the space dipole magnet ap-
plied, respectively in ALICE detector. As a result, the solenoid region
achieved 8.2 times speedup and the dipole region achieved 4.0 times
speedup.

Conventional implementation has used corrected measured fields as
its sources. It has divided the detector space in order to balance speed
and precision. It has used approximation algorithm which can approxi-
mate any function in arbitrary precision.

In the proposed implementation, the solenoid region is approximating
by at most 3rd order polynomial and by using simplified space division
scheme to reduced search time.
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In the dipole region, the approximation polynomial forms are restored
from the array of coefficients given to the algorithm of the conventional
implementation, and it is modified and pre-compiled to minimize the
computation cost, thereby speeding up without decreasing much pre-
cision. Segment search in dipole region was done conventionally with
binary search. We replaced it with time complexity O(1) algorithm at the
cost of memory to gain speed.

We compared error and speed between the conventional and the pro-
posed implementations. Comparison was conducted to confirm practi-
cality. Proposed implementation will be used in both data collection and
simulation for the ALICE experiment in the future.
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1 Introduction
ALICE experiments are studying matters that interact with strong force by
searching for physics peculiar to heavy ion collisions at the energy of LHC
accelerator. In the prediction of lattice Quantum ChromoDynamics (lQCD),
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quarks are released from confinement due to strong interaction in a high
temperature and high energy density environment as in the early universe,
and a new state of matter Quark Gluon Plasma (QGP) is generated. Stud-
ies on the specific viscosity and transport coefficient of QGP reproduced by
energy heavy ion collision and the mechanism of formation of quark of the
QGP derived from QGP are progressing. If heavy quark interacts on medium,
its mass and flavor are hardly changed, so QGP in the ALICE upgrade plan,
by raising the frequency of heavy ion collision to 50 kHz by 2021, it is con-
sidered thatD0 → K−π+，Λ+

c → pK−π+, and other rare physical events. In
the collection of scarce physical events scheduled to be measured in ALICE
experiments, it is difficult to record everything because data of 1 TB/s or
more is generated. Therefore, the O2(Online-Offline) plan was drafted for
the purpose of building a new event collection and processing infrastructure.
It is expected to reduce the amount of data to be transferred and recorded by
selectively recording only the physical events excluding the background by
reconstruction of particle tracks, but with the conventional data collection
program, To 5% was spent in the calculation of the magnetic field applied
to the particles inside the magnet, which was regarded as a problem. If
the calculation speed can not catch up with the occurrence of data, there is
a possibility that it is necessary to reduce the collected data and respond.
Therefore, speeding up reconfiguration has become important. The current
implementation of the magnetic field calculation above has already been un-
dertaken by a general-purpose optimization approach, and further speeding
up method is not trivial. In this paper, we propose a method that can speed
up while maintaining the precision of the current implementation to a cer-
tain extent (or perfectly), without relying on this special speed hardware,
And compare the speed with the current implementation.

1.1 Quark Gluon Plasma (QGP)
A nucleus is a ball of protons and neutrons, generally referred to as nucle-
ons, which is consisted of three quarks. These quarks are bound by gluons
so that they cannot be taken out from a hadron at ordinary environment (fig.
1.1). This is called confinement. Quantum Chromodynamics (QCD) calcula-
tions suggests strongly interacting particles (hadrons) should cause phase
transition at extreme environment that is high temperature (150-200MeV)
and high density (> 1GeV/fm3). In the new state of matter, quarks and glu-
ons move freely without confinement. We call the hot and dense medium
as Quark-Gluon Plasma (QGP). Some predictions says critical temperature
for phase transition is around 200 MeV (∼ 2 × 1012K) and the QGP existed
at t = 106 to 105 seconds from the Big Bang. Thus, study of the character-
istics of the QGP lead to our knowledge of the early universe. Quark-Gluon
Plasma is also important for understanding mass generation mechanism of
hadrons. The mass of the quark constituting the nucleon is estimated to
be ∼ 20 × 10−30 kg, and there is a big difference between triple the quark
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Figure 1.1: Schematic generation mechanism of the QGP. Quarks are con-
fined by strong force in room tempreature. Quarks are deconfined in high
tempreature and high density environment and undergo phase transition to
QGP phase (fig.1.2 top.)

mass and proton mass 1700 × 10−30 kg. Most of our mass is thought to be
generated by ”spontaneous break of chiral symmetry” caused by the strong
interaction of QCD, and QGP is a mass gain mechanism as a field where
chiral symmetry is also restored It will bring important insights to.

High energy heavy ion collisions are used to generate Quark Gluon Plasma
in laboratory and to investigate its properties. In this way, heavy ion like Pb
are collided in high speed so that a hot and dense matter is created there.
Such kind of QGP generation experiments has undergone since 1980s: an
experiment using the BEVALAC accelerator of Lawrence Berkeley Labora-
tory in the United States, the AGS accelerator of Brookhaven National Lab-
oratory (BNL) of the United States, and the SPS accelerator of the Euro-
pean Common Nuclear Research Organization (CERN). In the past, BNL-
AGS gold beams with 10 GeV per nucleus, CERN-SPS with 200 GeV sulfur
beams per nucleus and 160 GeV per nucleon beam fixed target experiments
have been conducted. The world’s first hadron collider BNL-RHIC acceler-
ator has started since 2000, and the European CERN-LHC accelerator has
started to operate since 2009. Verification of the QGP with 10 to 100 times
the collision energy was done until now. The experimental goals are below.

• Discovery of the QCD phase diagram

• Elucidation of properties of hot and dense QCD multi-body system

• Precise verification of QCD in non-perturbative regions

• Elucidation of mass acquisition mechanism of quarks

• Understanding the confinement mechanism in hadron
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Figure 1.2: QCD phase diagram.

• Understanding the QCD phase transition happened in the early uni-
verse after the Big Bang

Several evidence of the QGP was found as a result of the previous experi-
ments (Run 1 and Run 2). Representative results include discovery of high
transverse momentum (high-pT) hadron yield suppression (aka. jet quench-
ing), azimuthal anisotropy and flow, thermal photon observation.

Currently it goes beyond the phase of discovery of QGP and researches
on physical properties of QGP are in progress. In the future, the following
topics are to be understood.

• Temperature dependency of QGP quantities (Specific viscosity, trans-
portation coefficients, and so on)

• QGP response (behavior and propagation of energy lost by jet)
• Initial condition of collisions, early thermalization mechanism
• Hadron mass acquisition mechanism
• QCD phase structure

For above advanced study, more accurate measurements and newmeasure-
ments that were impossible precisely are indispensable.

1.2 Physics program with the upgraded ALICE detector
LHC will be upgraded by 2022 and develop into high brightness LHC with in-
creased collision frequency (HL - LHC). To further study the physical prop-
erties of QGP in this second generation LHC, we focus on rare probes of
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Figure 1.3: The ALICE detector after upgrade (Run3)

heavy ion physics in experiments after Long Shutdown 2 (LS 2) (Run 3, Run
4). The research subject is the coupling and the hadronization process of
QGP and the medium, and it consists of heavy flavor particles, quartzone
state (probe of temperature of QGP), real photon, virtual photon, jet includ-
ing heavy quark and jet with high lateral momentum , Correlation between
jet and other probes, measurement of lepton pair, etc. For example, in order
to enable these high precision measurements, the LHC-ALICE experiment is
planning to construct a large-scale new measuring instrument. Comparison
of measurement precision before and after upgrade [3] is shown in the table
1.

The upgraded ALICE detector will target for an integrated luminosity of
10nb−1 at full magnetic field (B = 0.5 T) in the ALICE solenoid and 3nb−1

with reduced field (B = 0.2 T) for Pb-Pb collisions. The requirement for an
integrated luminosity of 13nb−1 is motivated mainly by the following perfor-
mance figures as described in the ALICE upgrade document[12].

• Heavy flavour measurements
‒ The nuclearmodification factorRAA and elliptic flow v2 of strange-
charmed mesons (Ds) down to a transverse momentum pT of at
least 2 GeV/c with a statistical precision better than 10% for both
observables. This will allow a precise comparison of strange and
non-strange charm meson dynamics;

‒ Λcbaryon RAA and v2 down to 2 GeV/c and 3 GeV/c, respectively,
with a precision of about 20% and baryon/meson ratio for charm
(Λc/D) down to 2 GeV/c with the same precision. This will allow
to address the charm quark hadronization mechanisms at low and
intermediate momentum;

‒ RAAand v2 of beauty-decay particles via non-prompt D0, non-
prompt J/ψ and beauty-decay leptons (the two latter at both cen-
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Observable
Approved Upgrade

pAmin
T statistical pUmin

T statistical
(GeV/c) uncertainty (GeV/c) uncertainty

Heavy Flavour
D meson RAA 1 10 % at pAmin

T 0 0.3 % at pAmin
T

D meson from B decays RAA 3 30 % at pAmin
T 2 1 % at pAmin

T

D meson elliptic flow 1 50 % at pAmin
T 0 2.5 % at pAmin

T

D meson from B elliptic flow not accessible 2 20 % at pUmin
T

Charm baryon-to-meson ratio not accessible 2 15 % at pUmin
T

Ds meson RAA 4 15 % at pAmin
T 1 1 % at pAmin

T

Charmonia
J/ψ RAA (forward rapidity) 0 1 % at 1 GeV/c 0 0.3 % at 1 GeV/c

J/ψ RAA (mid rapidity) 0 5 % at 1 GeV/c 0 0.5 % at 1 GeV/c

J/ψ elliptic flow 0 15 % at 2 GeV/c 0 5 % at 2 GeV/c

ψ(2S) yield 0 30 % 0 10 %
Dielectrons

Temperature (intermediate mass) not accessible 10 %
Elliptic flow not accessible 10 %
Low-mass spectral function not accessible 0.3 20 %

Heavy Nuclear States
Hyper(anti)nuclei4ΛH yield 35 % 3.5 %
Hyper(anti)nuclei 4

ΛΛH yield not accessible 20 %

Table 1: Comparison of the physics reach, minimum accessible pT and rela-
tive statistical uncertainty, for selected observables between the approved
(current) scenario and the proposed upgrade scenario. [3]
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tral and forward rapidity) down to 1‒2 GeV/c with precisions from
a few percent to 10%. This will allow a detailed assessment of the
b quark transport properties in the medium;

‒ B meson fully-reconstructed decays (B+ → D0π+) down to 3
GeV/c with a precision of about 10%. This will provide an im-
portant direct measurement of beauty production;

‒ Λbbaryon production for pT > 7GeV/c. This will be a unique mea-
surement in heavy ion collisions and should allow for the deter-
mination of the nuclear modification factor of the beauty baryon,
which is sensitive to the b quark hadronization mechanism.

• Charmonium measurements

‒ RAAof J/ψdown to pT = 0 with statistical precision better than
1%, at both central and forward rapidity;

‒ RAAof ψ(2S) down to pT = 0 with precision of about 10%, at both
central and forward rapidity;

‒ v2of J/ψ down to pT = 0 with precision of about 0.05 (absolute
uncertainty), at both central and forward rapidity;
thesemeasurements will allow a detailed investigation of themech-
anisms of dissociation and regeneration for charmonium states in
the deconfined medium.

• Low-mass dileptons

‒ the additional sample of 3nb−1 with a reducedmagnetic field value
(0.2 T) in the central barrel is essential for low-mass dielectron
analysis to obtain the projected precision of about 10% on the
slope of the high-invariant-mass region and of about 10% on the
dielectron elliptic flow. This measurement will make it possible to
assess the time-evolution of the thermal radiation emitted by the
hot medium.

Most of these analysis (with the exception of the exclusive reconstruction of
beauty hadron decays) are characterized by a very small signal-to-background
ratio. It implies signal candidate events in Pb-Pb collisions are indistinguish-
able from background events. This means that it is not possible to use some
dedicated triggers to select collisions online for offline analysis. Instead, a
minimum bias trigger must be used to “record all collisions of Pb-Pb”. A
minimum bias trigger is the most basic trigger used to record all the events.
Table 2 summarize such branches.

1.3 Technical background
To tackle the data recording challenge, the new computing infrastructures
has planned: Online-Offline (O2) Project. Fig. 1.5 shows O2 hardware and
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Analysis S/ev [5] S/B B′/ev

D0 → K−π+ 7.6 · 10−3 10−2 3.0
D+

s → K+K−π+ 2.3 · 10−3 < 2 · 10−3 > 4.6
Λ+
c → pK−π+ 6.5 · 10−4 < 10−4 > 26

Λ+
c → pK−π+ (pT > 2GeV/c) 3.7 · 10−4 2 · 10−4 7.4

Table 2: Estimated signal per event (S/ev), signal-to-background ratio (S/B)
and number of background candidates per event (B’/ev) for central Pb-Pb
collisions at√sNN = 5.5 TeV[12]. These values are derived in the Conceptual
Design Report and in the Technical Design Report for the Inner Tracking
System upgrade documents[5], where the geometrical conditions are also
described.
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Figure 1.4: Data flow and processing pipeline of the O2 system. ITS/TPC
track findings are performed online (synchronously) at the Event Processing
Nodes (EPNs). Track finding is also performed in theMuon CHember (MCH)
and Muon Forward Tracker (MFT) detector. [12]

12



Detectors

8300 Readout 
Links

250 FLPs 1500 EPNs

Input: 250 ports
Output : 1500 ports

1500 x 60MB/s

1.1 TB/s

Switching
Network

500 GB/s 90 GB/s

Storage34 Storage
Servers

Storage
Network

Figure 1.5: Possible hardware implementation of the logical data flow. The
EPNs compress 500GB/s input data into 90GB/s.[12]

Detector Raw rate (GB/s) Compressed (GB/s) Reduction (1/x)
TPC 1,000 50 20
ITS 40 26 1.5
TRD 20 3 6.6
TOF 2.5 2 1.25
MCH 2.2 0.7 2.9
MFT 10 5 2
EMCal 4 1 4
PHOS 2 0.5 4
(Total) 1080.7 88.2 12.3

Table 3: Data reduction plan for the Pb-Pb collision 50kHz[12].
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Figure 1.6: Particle tracks, projected on a plane perpendicular to beam axis
(Z), of pp collisions measured with TPC detector. Red lines are physics
tracks and black lines are background tracks. Nearly half tracks are un-
necessary because these are come from gas molecules in the detector and
electrons in the beam pipe. In the field of L3 solenoid magnet, some parti-
cles with about 50MeV /c of momentum are moving circularly.
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network communication between them. The data flowing from the detec-
tor to the first stage processor (First Level Processor) group reaches 1.1
terabytes per second, which is difficult to record as it is. Therefore, in O2,
background information irrelevant to physics is immediately discarded, and
other data is compressed and recorded. The value read from the detector
which is the original data is basically discarded. As a result, data amount
reduction as shown in the table 3 is scheduled. The original data is orga-
nized and compressed from 1.1 TB/s to 90 GB/s. An element which is very
important in this data compression process is calculation of particle trajec-
tory. Figure 1.6 lists the particle trajectory plot of the TPC detector located
in the solenoid region. Half of that is the background, giving the opportunity
to reduce the data volume by half. As a function of the detector software
used to obtain the momentum from the curvature of the charged particle for
the calculation of the trajectory there is an inquiry of the static magnetic
field vector applied inside the detector. Although this function is necessary,
it took a little less than 5% to acquire the magnetic field out of the CPU time
involved in the reconstruction of the track, which was regarded as a prob-
lem. In this paper, the calculation of this magnetic field has been speeded
up.

1.4 Implementation difficulties
There are some restrictions when implementing acceleration of magnetic
field calculation.

First, since this calculation is performed very frequently, it is required to
complete at a speed of 0.1 μs order. Therefore, it is not possible to use
inference by a neural network which depends on many tensor products.

Next, the precision of the calculated magnetic field must maintain high
precsion of ±10−3Bz (Bz = 2, 5 kG). Its domain covers a wide range of 11 +
12 m in length and 6 - 10 m in diameter.

This magnetic field is a non-uniform and nonlinear magnetic field based
on measured values, and it is difficult to handle with a single equation.

Attempts to obtain precision by directly applying several statistical ma-
chine learning methods (this is an analytical approach different from so-
called AI) failed.

Therefore, one can think of an approach to lower the amount of calcula-
tion by changing the algorithm of existing implementation code. However,
as described later, existing implementations have already been considerably
optimized, including consideration for caching, so the improvement is not
trivial. For example, the binary search method used in existing implemen-
tations will be the fastest category as a list search method for real-valued
divisions where the distribution is biased.

If coping with software is difficult, one will consider using dedicated
hardware such as GPU, FPGA, ASIC. In O2, we plan to install FPGA in FLP
and GPU in EPN. Since track finding is performed by EPN from fig.1.4, there
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is a possibility that GPU can be used only when using O2. However, mag-
netic field calculation is also required for Monte Carlo simulation outside
the ALICE computer room and CERN computer center. Therefore, the ex-
istence of special hardware can not be assumed, and it must operate on a
commercially available ordinal x86_64 machines.

As with the lattice QCD simulation, it may be possible to arrange a large
amount of lattice points that have previously calculated the magnetic field in
the detector volume. However, the amount of available memory is also lim-
ited. The magnetic field calculation is performed in a distributed computing
environment and runs in many instances. To cope with other physical calcu-
lations, only a few MB of memory can be used for magnetic field calculation.
According to rough estimation, at least 70 GB per instance will be required
to obtain sufficient precision with the above method.

1.5 Purpose
The purpose of this study is to solve the above problem and to facilitate the
measurement of new physical channels by supporting data collection in the
coming Run 3. And to document explicitly one of the high-speed implemen-
tation which is faster than binary search which is considered the fastest in
common sense (this is special case, though).

2 Magnetic field calculation inside ALICE detec-
tor

2.1 Source measurement
Analysis of the magnetic field applied by ALICE’s L3 solenoid electromag-
net was made by Ruben Shahoyan[10] and the analysis of the magnetic field
applied by the dipole electromagnet was done by Ruben and Morsch[11]. In
the conventional implementation, internally the magnetic field is a set of pa-
rameterization (3 dimensional to 3 dimensional mapping) based on Cheby-
shev polynomial in the cylindrical coordinate system (see appendix for its
definition), defined for each divided chember of the magnetic field.

The degree of the polynomial is automatically adjusted so as to guarantee
the required precision (the maximum value of the difference from the mea-
sured field). The precision varies depending on the location, but it is about
2× 10−4 ∼ 5× 10−3 (solenoid region, in the case of applying 5 k gauss).

Where the data was missing, supplementation by a spline curve is per-
formed. There are two sets of data: 12 kA (low, 2 k Gauss) and 30 kA (high,
5 k Gauss). These dataset are the most accurate data set available.

When referring to conventional (existing) implementation in this paper,
it refers to AliMagF class[2] implemented by Ruben and these data sets.
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(x, y, z)

Segment Search

Linear Search (X, Y)

Check cached segment

Chebyshev polynomials

Binary Search (Z)

Field Calculation

Match Mismatch

(Bx, By, Bz)

Cache the segment

Figure 2.1: Schematic flow of the existing B-field calculation. Given a po-
sition (x, y, z) in the detector volume, searches corresponding subvolume
(segment) first. Then calculate B-field with the Chebyshev polynomials
using the coefficients from the segment struct. The last used segment is
cached for speed because it is likely near points are queried continuously in
track finding.

2.2 Overview
When a magnetic field inquiry of a certain point inside the detector occurs,
the flow until the magnetic field is calculated by the existing implementa-
tion is shown in the figure 2.1. The given point (x, y, z) is checked to see if
it is contained in the first cached chamber. If it matches, skip search and
go to calculation of Chebyshev polynomial. If it does not match, it finds the
segment to which z belongs by binary searching the array sorted by the max-
imum and minimum values (boundary values) of the Z axis of the chamber.
Subsequently, an array obtained by sorted the boundary values of the X axis
associated with that division is searched by linear search. Likewise, the Y
axis is linearly searched to find chambers.

Binary search is considered to be the fastest as a search method for ar-
bitrary length sorted real number list (Z axis boundary values) with unequal
distribution. The found chamber is cached for the next time. Thereafter, a
Chebyshev polynomial is calculated. Chebyshev polynomials are orthogonal
systems, and any function can be expressed when the number of terms is
infinite. Unlike the Fourier transform it is very fast because division is not
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used in it.
Thus, existing implementations are already optimized for speed.

3 Methods
Bottleneck of conventional method are chamber search and calculation of
complete system (Chebyshev polynomial) describing the magnetic field of
the chamber. Both took the same degree of time. In the conventional imple-
mentation, the solenoid region and the dipole region were calculated in the
same way, but in the proposed implementation, the optimization was per-
formed in different ways due to the difference in the gradient of themagnetic
field.

3.1 Solenoid Region
To decrease the field query overhead, High Level Trigger (HLT) has used
less precise and faster parametrization from before. In this method, only Bz

which is the main component of the solenoid region is computed as:

bz = c[0] + c[1] ∗ z + c[2] ∗ r + c[3] ∗ z ∗ z + c[4] ∗ z ∗ r + c[5] ∗ r ∗ r;

where c is an array of coefficients, z is distance in the beam line direction
in the ALICE local coordinate systemwith the Interaction Point as origin, and
r is the distance from the beam line. As seen above, φ-dependency ofBz and
transverse components (Bx, By) are ignored. This is not a issue because
current HLT reconstruction does not require much precision, but the result
cannot be used in final fitting. Therefore, we extended the parametrization
of HLT, consider the φ-dependency and transverse components and created
an implementation that can be used for the final fitting. The target precision
is set to 10−3×Bz for the value returned by the conventional implementation.

3.1.1 Approximation with linear regression model
In the solenoid region, we regard the conventional implementation as a black
box and create expressions that reproduce its behavior (aka. supervised
learning). Approximate conventional implementation with low order real co-
efficient polynomial by regarding it as pure function B(x, y, z) . The new
implementation of the solenoid region is practically a fitting to the conven-
tional implementation. The existing implementation adopted the cylindrical
coordinate system (r, ϕ, z) for the solenoid region, so this fitting makes it
possible to omit the coordinate system transformation which includes time
consuming ϕ calculation. The problem of finding a function that reproduces
data is called a regression problem. The linear regression model is the most
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basic model. First, the objective variable Bx is represented by a linear sum
of coordinates (explanatory variables).

Bx = w0 + w1x1 + w2x2 + w3x3 + ...+ wmxm = wTx

Where wi ∈ R is weight, w is a vector (w0, w1, ..., wm) and x is a vector
(x1, x2, ..., xm). In normal linear regression, x = (x, y, z), but this time the
explanatory variable contains not only the given coordinates x, y, z but also
the product of coordinates (x2, xy, z2x , etc). This method is called polyno-
mial regression. The number of explanatory variables must be chosen such
that sufficient precision is obtained and there is no speed degradation. As
a result of fitting and measuring the precision, it was found that at most
a third order real coefficient polynomial is sufficient for the gradient of the
solenoid region. Therefore, the expression of Bx is given as follows.

Bx (x, y, z) = a0 + a1x+ a2y + a3z + a4xx+ a5xy + a6xz + a7yy + a8yz + a9zz

+ a10xxx+ a11xxy + a12xxz + a13xyy + a14xyz + a15xzz + a16yyy + a17yyz + a18yzz + a19zzz

Where w = (a0, a1, ..., a19) . To reduce multiplications and additions,
transformed as follows. However, do not change x.

Bx (x, y, z) = a0 + x(a1 + x(a4 + xa10 + ya11 + za12) + y(a5 + za14))

+ y(a2 + y(a7 + xa13 + ya16 + za17) + z(a8))

+ z(a3 + z(a9 + xa15 + ya18 + za19) + x(a6))

Next, randomly collect sample points from existing implementations N
points. Let the pair of explanatory variable vector and Bx corresponding
to the i-th point be (xi, Bx,i). At this time, care must be taken not to bias
the distribution of the sample points. Simply taking sample points in a grid
shape has scale dependence. Therefore, it is better to sample them at ran-
dom. Also, when random numbers are obtained according to the geometry
(cylindrical shape) of the detector, it is necessary to check whether points
are evenly distributed over the detector volume.

Finally, find the weight w using the method of least squares. For calcu-
lation, we used sklearn.linear_model.LinearRegression() of scikit-learn[8].
The approximation precision of this approach is described in the results sec-
tion.

3.1.2 Space division toward improved precision
When tried to approximated the entire solenoid region by one equation, the
precision is not sufficient. So in order to improve it, whole space was divided
into chambers as shown in fig. 3.1. The considerations on the division are
as follows.
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Figure 3.1: Partitioning of the solenoid volume into chambers. (i) One of the
chambers. (ii) The volume is divided by the detector boundary radius and
quadrants. (iii) The volume is divided by the sign of the Z axis.

• For R axis

‒ Divided along the detectors’ material boundary taking advantage
of the fact that the detectors in the barrel are centered around the
point at R = 0. The gradient is greatly different inside and outside
of detector boundaries.

‒ More specifically, the volume was divided into five regions: ITS
detector (R ≤ 80 cm), TPC detector (80 < R ≤ 250), TOF detector
(250 < R ≤ 400), a gap which is just outside of the TOF detector
(400 < R ≤ 423), the volume where there are calorimeters such as
PHOS, EMCal, DCal detector (423 < R ≤ 500).

‒ r =
√
x2 + y2 is used for branching depending on R, but by squar-

ing the above constants beforehand, extra calculation of square
root can be reduced by comparing it with x2 + y2.

• For ϕ axis

‒ In some cases ϕ dependency is large like fig. 3.3, and approxima-
tion precision improves by dividing in ϕ axis direction.

‒ Simplified conditional branching by splitting just at 90 degrees.

• For Z axis

‒ Bx, By has symmetry around Z = 0 as in fig. 3.2,3.3, therefore, as
with the ϕ axis, splitting with Z = 0 improves precision.
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Figure 3.2: Bx of conventional implementation near Z = 0 (−25 ≤ Z ≤ 30)
on the X-Y plane, plots of 5cm step. The field is flipped near Z = 0.

‒ −550 ≤ z (cm) ≤ 550 to divide 22 at 50 cm intervals to ensure
sufficient precision in the wide region.

‒ Since it is divided at regular intervals, an index of the array can be
specified with one division, and a penalty (pipeline stall in CPU)
due to failure of conditional branch does not occur.

The entire solenoid region is divided into 5×4×22 = 440 chambers. Since a
simple division method is used, it is possible to identify the chamber which
contains the point to be queried quickly. 100,000 points were sampled and
fitted for each chamber.

3.2 Dipole Region
Unlike the solenoid region, the gradient of the dipole region is remarkably
large, and if fitted in the same way, the number of divisions becomes very
large. Therefore, we did not dare fit in the dipole region, but speed up by
extracting polynomial from existing parametrization and modifying it.

3.2.1 Loop and Branch elimination
The Chebyshev polynomial calculation was implemented with a code having
a triple loop and a branch within the loop. Since branch prediction is mainly
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Figure 3.3: By of conventional implementation near Z = 0 (−25 ≤ Z ≤ 30) on
the X-Y plane, plots of 5cm step. The field is flipped near Z = 0. Additionally,
ϕ -dependency is remarkable at Z = −5, 0, 5.

performed based on the previous results that passed through the branch, if
the for loop satisfies the termination condition, the branch prediction fails
and the penalty is received. Therefore, it is considered that speed can be
increased by removing the loop. Other branches should be removed asmuch
as possible.

Parametrizations of the magnetic field using the conventional implemen-
tation is stored in the ROOTfile format. From this file one canwrite parametriza-
tion in plain text format. In order to make it easier to handle, we created
software that parses this text and converts it into portable JSON text for-
mat. Furthermore, using Mathematica, parametrizations using the Cheby-
shev polynomials in the dipole region are extracted from the converted JSON
file, and obtained the polynomials consisting of just x, y, z with no loop or
branch by simplification for each chamber and components Bx, By, Bz .

3.2.2 Extra multiplication reduction and Fused Multiply Add
Then converted the obtained polynomials into C code andmade it compilable
beforehand (Fig.3.4). For the magnetic field query, two function is requried.
One is to calculate all of (Bx, By, Bz) and another calculate only Bz . The
calculation of (Bx, By, Bz) and Bz was separately defined so as not to in-
clude extra jump instructions in the generated code. Figure 3.4 shows one
Bz (x, y, z) function of a chamber describing a magnetic field of 5k gauss.
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f l o a t dip5k1bz ( const f l o a t p [3 ] ) {
const f l o a t x = p [0 ] , y = p [1 ] , z = p [ 2 ] ;
return 5484.90 f+−0.00734 f *y+x*(−0.01580 f +0.00008 f *y+−0.00004 f *z+

x*(0.00008 f +1.67927e−7f *x+−1.06067e−6f *y+3.12794e−7f *z ))+
z *(40.0776 f+z *(0.10987 f+z *(0.00013 f +6.10621e−8f *z ) ) ) ;

} ;

Figure 3.4: Code snippet of a generated Bz function. (shortened to 6 digits
for visibility)

This function takes the Cartesian coordinates of the point to query the mag-
netic field as an argument and returns Bz at that point.

A polynomial in the Figure3.4 was made from the expanded form by the
Horner’s method. Horner’s method is like following.

1 + 2x+ 3x2 + 4x3 → 1 + x(2 + x(3 + 4x))

As shown above, the variable x is extracted so as to reduce the number
of multiplications. Horner’s method has been proved to have the smallest
number of multiplications when used for polynomials[7]. Also, the number
of additions is also minimum[6]. In addition, recent CPUs have dedicated
instructions for calculating ax+b in Horner format. In the Intel Haswell archi-
tecture and after, this Fused Multiply Add (FMA) instructions was extended
to handle floating point numbers only from integers. O2 computers have
not been purchased yet, so there is no problem that old CPUs mix in online
processing. For non-compliant CPUs used in places other than O2, they are
compiled to use normal AVX instructions or similar instructions (using the
-march compiler option). Figure 3.5 shows the difference in assembly de-
pending on the presence or absence of FMA. Instructions starting with fma
could calculate a = ax + b with 5 cycles of latency. For mulss and addss
has 5 and3 cycles of latency respectively, it takes 8 cycles in total, 1.6 times
faster with fma.

Since the proposed implementation of the dipole region requires com-
piling in advance, it can be said that it is an implementation specialized for
calculation speed, discarding versatility.

3.2.3 Constant time complexity O(1) segment search
The computational complexity of the binary search of figure 2.1 is O(logn)
(n is the number of Z segments to be searched + 1 = 90), but about 7 ar-
ray accesses (90 < 27) and three cache miss opportunities (if the number
is single precision floating point number and the cache line is 64 bytes).
Penalties due to cache miss have been improved year by year, but still there
is a big difference in the time taken when L1 cache hit and main memory is
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_dip5k1bz:
pushq %rbp
movq %rsp, %rbp
movss (%rdi), %xmm0
movss 4(%rdi), %xmm3
movss 8(%rdi), %xmm1
movss 3297658(%rip), %xmm2
mulss %xmm3, %xmm2
addss 3297650(%rip), %xmm2
movss 3297646(%rip), %xmm4
mulss %xmm3, %xmm4
addss 3297638(%rip), %xmm4
movss 3297634(%rip), %xmm5
mulss %xmm1, %xmm5
addss %xmm4, %xmm5
movss 3297622(%rip), %xmm4
mulss %xmm0, %xmm4
addss 3297614(%rip), %xmm4
mulss 3297610(%rip), %xmm3
addss %xmm4, %xmm3
movss 3297602(%rip), %xmm4
mulss %xmm1, %xmm4
addss %xmm3, %xmm4
mulss %xmm0, %xmm4
addss %xmm5, %xmm4
mulss %xmm0, %xmm4
addss %xmm2, %xmm4
movss 3297574(%rip), %xmm0
mulss %xmm1, %xmm0
addss 3297566(%rip), %xmm0
mulss %xmm1, %xmm0
addss 3297558(%rip), %xmm0
mulss %xmm1, %xmm0
addss 3297550(%rip), %xmm0
mulss %xmm1, %xmm0
addss %xmm4, %xmm0
popq %rbp
retq

_dip5k1bz:
pushq %rbp
movq %rsp, %rbp
vmovss (%rdi), %xmm0
vmovss 4(%rdi), %xmm1
vmovss 8(%rdi), %xmm2
vmovss 2538974(%rip), %xmm3
vfmadd213ss

2538969(%rip), %xmm1, %xmm3
vmovss 2538965(%rip), %xmm4
vfmadd213ss

2538960(%rip), %xmm1, %xmm4
vfmadd231ss

2538955(%rip), %xmm2, %xmm4
vmovss 2538951(%rip), %xmm5
vfmadd213ss

2538946(%rip), %xmm0, %xmm5
vfmadd231ss

2538941(%rip), %xmm1, %xmm5
vfmadd231ss

2538936(%rip), %xmm2, %xmm5
vfmadd213ss

%xmm4, %xmm0, %xmm5
vfmadd213ss

%xmm3, %xmm0, %xmm5
vmovss 2538922(%rip), %xmm0
vfmadd213ss

2538917(%rip), %xmm2, %xmm0
vfmadd213ss

2538912(%rip), %xmm2, %xmm0
vfmadd213ss

2538907(%rip), %xmm2, %xmm0
vfmadd213ss

%xmm5, %xmm2, %xmm0
popq %rbp
retq
nopw %cs:(%rax,%rax)

Figure 3.5: Comparison of assemblies w/ andw/o FusedMultiply Add (FMA)
intrinsics. Left: w/o FMA, right: w/ FMA. Instructions which starts with
’fma’ computes a = ax + b in 5 cycles of latency. On the other hand, mulss
and addss takes 5, 3 cycles of latency respectively, the former is 1.6 times
faster in simple calculation. Used compiler is Clang-900.0.39.2 on Intel Core
i7 Haswell Refresh.
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referenced, improving cachemissesmay affect performance[4]. It is consid-
ered that the Intel Haswell architecture is about 40 times faster in this case.
Therefore, it is necessary not only to reduce the computation complexity, but
also to make an access such that main memory access is reduced or cache
prefetch succeeds. For linear search, there are few data to be searched and
if it is in the cache, the order of the computation time may be better than
the binary search despite O(n).

Interpolation search[9] is a search algorithm that may be faster than bi-
nary search if the data to be searched does not fit in the cache line. In
Interpolation search, a linear search is performed by determining the in-
dexs to start searching by linear expression, expecting that the values are
distributed linearly in the sorted real number array. This is similar to how
to find a specific person from the phone book. Interpolation search com-
pletes in O (log logn) steps on average on uniformly distributed arrays on
average[9]. However, if the data is skewed, it is substantially the same
as the linear search and it becomes the worst calculation complexity O (n).
Fig.3.6 is a plot of the variation in values in order to investigate whether
Interpolation search can be used for searching Z section. Dipole region
−1760 ≤ Z ≤ −558.3 is divided into 89 segments without duplication us-
ing the Z coordinate maximum value minimum value of the chambers. Let’s
call zid = 0 for the segment with the smallest z and zid = 88 for the seg-
ment with the biggest z. The straight line in the figure tries to associate the
Z position with zid by a linear equation, and the gap between this straight
line and the segment indicates the possibility that the interpolation search
does not operate efficiently.

The proposed implementation is a new algorithm that corrects the lat-
ter part of this interpolation search so that the search always ends at one
branch. Since there is no loop, both the average computational complexity
and the worst computational complexity are O(1). Such ideas have been
known at least within ALICE for a long time but have not been clarified.
We call this method ”Prepopulated Quick Segment Search”. The fast seg-
ment search consists of a slow build part that creates a table from the data
to be searched and a fast search part that uses a table. A schematic di-
agram of the search part is shown in figures 3.7 and pseudocode in the
algorithm1. In the figure, since it is a one-dimensional search method, the Z
axis is taken as an example. The black dot z is the z coordinate of the point
where the magnetic field is desired to be acquired. Black line segments rep-
resent divisions. The distance of the minimum value zmin and the maximum
value zmax width = zmax−zmin, the number of divisions number of divisions,
The difference between the smallest element of the sequence and the ori-
gin is characterized by offset = zmin. Indices starting from 0 are given to
slices created by this arithmetic progression. The number of divisions is de-
termined beforehand so that the maximum value of only one Z axis value
(boundary value of segments) of the end of the chamber is included. You
can follow the procedure later. The first step in the search is to identify
this index from z (the first line of pseudocode). In the example shown in
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Figure 3.6: Split dipole region −1760 ≤ Z ≤ −558.3 into 89 segments by
maximum and minimum Z values of all the chambers. Call a segment with
minimum Z as zid = 0, and maximum Z as zid = 88. A crossing line is placed
to show possibility of linear relationship between Z positions and zids. The
gap between the line and the segments implies Interpolation search works
less efficiently.
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０
Zz0       １           2          3           4          5          6           7           8          9          10        11

０ １ ２ ３ ４ 5 6 7zid=

Figure 3.7: Schematic figure of Quick Segment Search algorithm. The points
are just an example and nothing to do with real data. Prepare evenly spaced
slices (orange arithmetic sequence) which contain only one or zero Z value
of a chamber border (blue point) in advance. The id of one of evenly spaced
slices is immediately calculated from given z (e.g. 6). Every slice knows a
z position of the blue point and a zid of the segment which is smaller than
the blue point. The zid of larger side is always (the zid of smaller side + 1).
Then by comparing z and z of the blue point, a zid for queried z is obtained
(e.g. 3). Thus, zid is used to lookup the other value (data of X,Y axis or an
index of a polynomial).

Algorithm 1 Prepopulated Quick Segment Search (search part). See text for
details.

index ← ⌊(z − offset) ∗ (number of divisions/width)⌋.
if index > number of divisions then search failed.
slice ← slices[index].
id ← former zid of slice+(if z < segment end position of slice then 0 else 1) .
return id.

the figure, index = 6. 0 ≤ index < number of divisions, continue, else the
search is unsuccessful because it is out of range. By the work in the con-
struction part, an array slices is prepared in which slice boundary values
segment end position and the set of zid (former zid) of the division smaller
than the boundary value are stored for all the slices. If there is no boundary
value in the slice, segment end position = +∞ is stored. On the other hand,
since the divisions are sorted, the zid of the division larger than the bound-
ary value is always zid + 1. On the fourth line of the pseudo code, we use
this property to obtain the zid of the segment containing z. In the example
shown in the figure, zid = 3. You can obtain a search table for other axes
by subtracting zid obtained in this way with another sequence. As with the
Z axis, search in the X axis and Y axis direction can be performed, and fi-
nally the number of the chambers can be obtained, and an approximation
function pointer is found.

3.2.4 Quick segment search: Preparation
Describe the construction part of the high-speed segment search algorithm.
Pseudocode is shown in the algorithm2.
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Figure 3.8: Parametrized part of dipole magnet applied region. Colored
cubes are the chambers of dipole field parametrization from AliMagF class.
This parametrization contains 1482 chambers.

Algorithm 2 Prepopulated Quick Segment Search (construction part). See
text for details.

n← 1
while(true){

maxSegments← 0
lastzid← 0
for(i← 0; i < n; + + i){

slice start← i ∗ (width/n) + offset
slice end← (i+ 1) ∗ (width/n) + offset
nSegs← 0
slices[i]← (lastzid,+inf)
for(j ← 0; j < segends.length; + + j)

if(slice start < segends[j] < slice end)
nSegs++
slices[i]← (j, segends[j])
lastzid← j

}
}
maxSegments← max(maxSegments, nSegs)

}
if(maxSegments == 1)return(n, slices)
n++

}

28



µs/call Conventional Proposed Conventional/Proposed
Solenoid region 0.43（exact） 0.053（approx.） 8.2
Dipole region 0.61（exact） 0.15（exact.） 4.0

Table 4: Consumed CPU time for single query of one random point.

The basic idea is to increase n from 1 in order until the maximum value of
the number of segment boundaries contained in the slice becomes 1 when
divided into n.

Since this preliminary preparation takes a relatively long time, it is suit-
able for inquiries about data whose data to be queried is rarely changed.
In this way, the implementation of the dipole region discards versatility and
specializes in the search speed.

4 Results
Improvement of speed by proposed implementation is shown in the table 4.
A speedup of 8.2 times in the solenoid region and 4.0 times in the dipole
region was observed. For the compiler, Clang-900.0.39.2 was used. The
environment is Intel Core i7 Haswell Refresh.

4.1 Result of Solenoid Region
The magnetic field approximation precision of the solenoid region is shown
in Fig.4.1. Focusing on the center column (Z dependency) of this figure, the
error exceeds 0.005 kG of the target precision in the region of|Z| > 240 cm.
In this region, the gradient is large and it is difficult to approximate with
a three-dimensional polynomial. Due to this influence, some errors (φ,Z
dependence) exceeding target precision are also seen. Fortunately, this Z
range region is outside the acceptance region, so it has no direct effect on
physics. There is a possibility of small influence on background particles, but
it is not very important that there is high precision when considering them.
Therefore, the proposed implementation seems to have sufficient precision
for use in real time reconstruction and simulation. Therefore, we decided to
allow errors on |Z| > 250 cm. One can fall back to existing implementations
whenever more accurate results are needed, and you can also examine the
effect of errors by comparing the results using existing implementations and
those using suggested implementations.

By approximation based on simple linear regression and simple splitting,
precision that is not problematic in practical use could be secured.
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Figure 4.1: Positional dependency ofmean precision permagnetic field com-
ponent in solenoid region.

4.2 Result of Dipole Region
Since the calculation of the dipole region is implemented so as to be compat-
ible with the conventional implementation including the behavior at chamber
interface, there should be no error.

The proposed implementation using loop and multiplication elimination,
precompilation and fast search algorithm was not as fast as the solenoid re-
gion using approximation, but since it was able to secure the same precision
as in the conventional implementation, we used the conventional implemen-
tation in all use cases It can safely be replaced.

5 Discussions
5.1 Trade-off between polynomials calculation speed and

precision
Consider the trade-off between precision and speed by reducing the number
of polynomial terms. As the general tendency, the average approximation
precision is higher (lower) as the number of terms of the approximate poly-
nomial is larger (smaller), and the time taken for calculation is increased
(decreased). Therefore, Recursive Feature Elimination was used to extract
terms contributing to high precision. The ranking of importance of terms
by RFE is shown up to the 4th order term tab 5. RFE is performed in the
following procedure.
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18 yyz rrpp
19 zzz zrp
20 xyzz zrpp
21 xxyy zzr
22 xxxz rrr
23 xxxx zzpp
24 yyyy rrrp
25 xzzz zzz
26 yzzz zrrp
27 yyyz zzzp
28 xyyy zrr
29 xyyz zzrp
30 xxyz rrrr
31 xxxy zzzr
32 yyzz zzrr
33 zzzz zrrr
34 xxzz zzzz

1 z p
2 y pp
3 x ppp
4 zz pppp
5 yy z
6 xx r
7 xy zp
8 xz zpp
9 yz zppp
10 xyz rp
11 xzz rpp
12 yzz rppp
13 yyy zz
14 xyy zr
15 xxy rr
16 xxx rrp
17 xxz zzp

Table 5: Importance rank obtained with Recursive Feature Elimination tech-
nique.

1D　　 　2D　　　　　　 3D　　　　　　　　　　4D

Req. prec

(TPC 2kG, 0<z<250cm, 90°<φ<180°)

Figure 5.1: Trade-off between polynomials calculation speed and precision
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1. Create a model starting from all features (terms) and delete features
with the lowest importance (absolute value of coefficient)

2. Create the model again and repeat deletion of the feature quantity with
a small importance until there is no item

In the table, r and p represent the radius and the azimuth angle ϕ in cylin-
drical coordinates.

The relationship between the number of terms used and the maximum
deviation / average deviation sorted in this order is shown in 5.1.

The departure from the conventional implementation decreases in the
Cartesian coordinate system due to the increase in order. With the precision
of cylindrical coordinate display, it is inferior to Cartesian coordinate display
up to item 23.

Considering the above-mentioned trade-off between precision and speed,
we made technical decisions to adopt polynomials of at most 3 in the Carte-
sian coordinate system.

5.2 Comparison of regression or approximation methods
other than multiple linear regression

What other approaches to efficiently satisfy the required precision? The
table 6 is the result of using Python’s scikit-learn package which contains
many regression algorithms. The four regression algorithms reached the tar-
get precision with respect to the maximum deviation amount. The most sys-
tematic was the linear regression and the Bayesian ridge regression. Since
the fitting speed was higher in the linear regression, the Bayesian ridge re-
gression algorithmwas not selected. We triedmini (DFPmethod), conjugate
gradient method, Levenberg-Marquardt method, BFGS method, SVM, deci-
sion tree, original algorithm etc. as a method not limited to the scikit-learn
regression algorithm, but sufficient precision was obtained I did not use it
or because I did not finish the calculation.

5.3 Memory usage
You should not allocate more memory to calculate the magnetic field. The
table 7 is a comparison of memory consumption of the conventional imple-
mentation and the proposed implementation. Root [0] new AliMagF () //
Finish class loading Similarly, 2492 usage measurement was made using
GetProcInfo () of ROOT, but it should be regarded as a reference value be-
cause the blur is large for each measurement. Conventional implementation
loads two parameterizations besides solenoid and dipole, so it is reasonable
to compare with half of the values in the table.

In addition, although the dipole region of the proposed implementation
is implemented by dynamic loading of shared libraries, a reference count is
made with global variables, and when all instances are destroyed, unloading
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param\impl (KB) AliMagF（conv.） AliMagFast（prop.）
5kGauss 38,724 4,724
2kGauss 33,104 6,208

Table 7: Memory usage comparison between the conventional and the pro-
posed implementation. Both 2 kilo Gauss and 5 kilo Gauss cases are shown.
The values are for reference. See text for detail.

is performed and the memory is freed It has become. Therefore, the mem-
ory consumption of the suggested implementation should be larger than the
size of the shared library to be dynamically loaded, but the difference of
the value returned by GetProcInfo () only increased or decreased by around
1000 KB. Therefore, the size of the shared library is listed as a reference
value in the right column of the table 7. Considering the above, looking at
the table, there is a possibility that thememory consumption of the proposed
implementation is less than half that of the conventional implementation.

6 Conclusion
In the heavy ion collision physics, the discovery of the quark gluon plasma
is now an important subject of study for its physical properties. For rare
physical events scheduled to be measured by the ALICE experimental ad-
vancement plan to reach unexplored physics, the use of online triggers is
not efficient for the low signal / background ratio. Therefore, it is necessary
to collect all data with lead-lead collision. However, since data of 1 TB/s or
more is generated from the detector, it is difficult to record everything. For
data compression, it is required to calculate the momentum of the particles
from the magnetic field inside the detectors, reconstruct their track, and
eliminate the background tracks. In the conventional data acquisition pro-
gram, ~ 5% of the reconstruction time was spent in calculating the magnetic
field applied to the particles inside the magnet.

For each space applied by solenoid electromagnet and dipole electro-
magnet, we proposed a faster implementation than before. In the solenoid
region, approximation by a polynomial of at most 3rd order is performed, and
by simplifying the division method of the space, the time spent on the search
can be greatly shortened. The solenoid region is divided into 5×4×22 = 440,
and the precision aroundBz×10−3 is ensured, especially in the center where
precision is required.

In the dipole region, approximation polynomials that record magnetic
fields recorded using conventional implementation are extracted, modified
and precompiled so as to minimize the number of multiplications and ad-
ditions, thereby speeding up without decreasing precision. The search of
the divided space in the dipole region was conventionally binary search and
linear search combined, but by replacing the algorithm with the time com-
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plexityO(1) at a price of memory, the speed was increased. In this algorithm,
in order to associate a one-dimensional position with a segment, the interval
between the maximum value and the minimum value is divided into slices.
The number of divisions is chosen so that the number of the boundaries in
each division is at most 1 and the number is minimum. Such divided slices
hold the boundary position of the segment and the id of the section smaller
than the boundary. As a result, the division is definitely found by dividing
once, lookup of the array, and comparing the position to be inquired with the
boundary value. A high-speed segment search is performed for each of the
Z axis, the X axis, and the Y axis, so that a polynomial corresponding to the
queried point can be obtained.

For both solenoid and dipole regions, practicality was confirmed by com-
paring the measurement of the deviation from the conventional implemen-
tation and the speed. The proposed implementation will be used both for
data collection and physical simulation of future ALICE experiments.
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A Definition of the Chebyshev polynomials Tn
The Chebyshev polynomials[1] of the first kind are defined by the recurrence
relation:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

Here is a example of the Chebyshev polynomials of the first kind.

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

T7(x) = 64x7 − 112x5 + 56x3 − 7x

T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1

T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

T10(x) = 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1

T11(x) = 1024x11 − 2816x9 + 2816x7 − 1232x5 + 220x3 − 11x

The Chebyshev polynomials Tn are polynomials with the largest possible
leading coefficient, but subject to the condition that their absolute value on
the interval [－1,1] is bounded by 1. The interpolation built with the Cheby-
shev polynomial minimizes the problem of Runge’s phenomenon and pro-
vides an approximation that is close to the polynomial of best approximation
to a continuous function under n→∞.
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B Indices of precision evaluation
Several indices of precision evaluation are considered where a field calcu-
lated by the conventional implementation at given point pj is Ai,j(i = x, y, z)
and approximate field Bi,j . The definitions are:

• Mean deviation
⟨∆Bi⟩ =

1

N

N∑
j=1

|Bi,j −Ai,j |

• Root Mean Square (RMS)

RMS(∆Bi) =

√√√√ 1

N

N∑
j=1

(Bi,j −Ai,j)
2

• Maximum deviation

max (∆B) = max
j∈Samples

|Bi,j −Ai,j |

Compared above and target precision Bz × 10−3(=0.002 or 0.005kG)

C Programs
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Algorithm 3Mathematica reimplementation of the AliMagF class. It is used
to extract polynomials from existing parametrizations.
(* Cheb: A piece of scalar parametrization *)

Cheb[p_, {r_, ϕ_, z_}] :=



j=1

Length[p]



k=1

Lengthpj



l=1

Lengthpj,k

-p[[j, k, l]] ChebyshevT[l - 1, z] ChebyshevT[k - 1, ϕ]

ChebyshevT[j - 1, r];

(* Inbox: Point (r,φ,z) ∈ b or not *)

InBox[b_] := And @@ Thread[Between[{r, ϕ, z}, MapThread[List, b]]];

(* Cheb3D: A pair of 3 params (Bx,By,Bz) and its interpolation region *)

Cheb3D[block_] :=

{Cheb[block[["interpolationOutputs", #, "chebyshevPolynomialCoeffs"]],

RescalingTransform[block[["interpolationRegion"]] // Transpose, {{-1, 1}, {-1, 1}, {-1, 1}}][

{r, ϕ, z}]], InBox[block[["interpolationRegion"]]]} & /@ {1, 2, 3};

(* AliMagWrapCheb: Create a 3D-field parametrization *)

AliMagWrapCheb[cheb_] := Piecewise /@ (Cheb3D /@ cheb // Transpose);

(* AliMagF: Naive reimplementation of AliMagF#Field() *)

AliMagF[measurement_, param_] :=

If[param == "dipoleParams", # /. {r → x, ϕ → y} &,

TransformedField["Cylindrical" → "Cartesian", #, {r, ϕ, Null} → {x, y, z}] &] /@

AliMagWrapCheb[Import[measurement, "RawJSON"][[2, param, All, 2]]];

(* Usage *)

sol = AliMagF["Sol30_Dip6_Hole.json", "solenoidParams"];

sol /. {x → 0, y → 0, z → 0}

dip = AliMagF["Sol30_Dip6_Hole.json", "dipoleParams"];

dip /. {x → 0, y → 0, z → -1000}
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Algorithm 4Mathematica C-source generator of the B-field parametrization
in HornerForm.
(* Cheb: A piece of scalar parametrization *)

Cheb[p_, {r_, ϕ_, z_}] :=



j=1

Length[p]



k=1

Lengthpj



l=1

Lengthpj,k

-p[[j, k, l]] ChebyshevT[l - 1, z] ChebyshevT[k - 1, ϕ]

ChebyshevT[j - 1, r];

(* Cheb3D: A pair of 3 params (Bx,By,Bz) and its interpolation region *)

Cheb3D[block_] :=

{Cheb[block[["interpolationOutputs", #, "chebyshevPolynomialCoeffs"]],

RescalingTransform[(block[["interpolationRegion"]] // Transpose), {{-1, 1}, {-1, 1}, {-1, 1}}][

{x, y, z}]], block[["interpolationRegion"]]} & /@ {1, 2, 3};

(* ExpandPower: Replace Power[y,2] to (y*y) *)

ExpandPower[e_] := StringReplace[ToString[CForm[

e //. Power[y_, n_] ⧴ StringJoin["(", Riffle[Table[SymbolName[y], n], "*"], ")"]

]], {" " → "", "\"" → ""}]; (* remove unneeded characters *)

(* CHornerForm: Encode a polynomial to C-like efficient form *)

CHornerForm[e_] := ExpandPower[HornerForm[e]];

fieldTemplate = StringTemplate[

"void ``(const float p[3], float b[3]) { const float x = p[0], y = p[1], z = p[2];

b[0] = ``; b[1] = ``; b[2] = ``bz(p); };"];

bzTemplate = StringTemplate[

"float ``bz(const float p[3]) { const float x = p[0], y = p[1], z = p[2]; return ``; };"];

(* ChebCodeGen: Write C functions to be used with Field() and GetBz() *)

ChebCodeGen[hornered_, prefix_] := StringRiffle[MapIndexed[

Module[{funcname = prefix <> ToString[First[#2] - 1]},

bzTemplate[funcname, #1[[2, 3]]] <> "\n"

<> fieldTemplate[funcname, #1[[2, 1]], #1[[2, 2]], funcname]] &,

hornered], "\n\n"];

(* PrepareFastDipoleData: Take a jsonified AliMagWrapCheb data and write dipole parametrizations *)

PrepareFastDipoleData[jsonFilePath_, exportFilePath_, prefix_] :=

Module[{data = Import[jsonFilePath, "RawJSON"]},

Module[{dipole = Cheb3D /@ data[[2, "dipoleParams", All, 2]]},

Module[

{hornered = Map[{(*region*)#[[1, 2]], (*Bx,By,Bz*)CHornerForm /@ #[[All, 1]]} &, dipole]},

Export[exportFilePath, ChebCodeGen[hornered, prefix], "String"]

]]];

AliRootGit = "alice/AliRoot";

AliPhysicsGit = "alice/AliPhysics";

SourceFile[name_] := FileNameJoin[{$HomeDirectory, AliPhysicsGit, "PWGPP/FieldParam", name}];
DestFile[name_] := FileNameJoin[{$HomeDirectory, AliRootGit, "data/maps", name}];
PrepareFastDipoleData[SourceFile["Sol12_Dip6_Hole.json"], DestFile["dip2k.c"], "dip2k"]

PrepareFastDipoleData[SourceFile["Sol30_Dip6_Hole.json"], DestFile["dip5k.c"], "dip5k"]

39


	Introduction
	Quark Gluon Plasma (QGP)
	Physics program with the upgraded ALICE detector
	Technical background
	Implementation difficulties
	Purpose

	Magnetic field calculation inside ALICE detector
	Source measurement
	Overview

	Methods
	Solenoid Region
	Approximation with linear regression model
	Space division toward improved precision

	Dipole Region
	Loop and Branch elimination
	Extra multiplication reduction and Fused Multiply Add
	Constant time complexity O(1) segment search
	Quick segment search: Preparation


	Results
	Result of Solenoid Region
	Result of Dipole Region

	Discussions
	Trade-off between polynomials calculation speed and precision
	Comparison of regression or approximation methods other than multiple linear regression
	Memory usage

	Conclusion
	References
	Definition of the Chebyshev polynomials Tn
	Indices of precision evaluation
	Programs

